scholarly journals Temperature-Activated Change of Permeable Material Properties for Low-Noise Trailing Edge Applications

2019 ◽  
Vol 9 (15) ◽  
pp. 3119
Author(s):  
Jonathan Mayer ◽  
Alejandro Rubio Carpio ◽  
Daniele Ragni

The present work analyses broadband noise scattering from permeable trailing edges with identical micro-structure but under a change of temperature. Experiments are performed in an anechoic wind tunnel using a NACA0018 airfoil at chord-based Reynolds numbers between 1.88 × 105 and 3.14 × 105 and no incidence. A microphone array is used to determine far-field sound pressure level changes upon trailing edge heating. It is found that broadband noise emission can be actively controlled by varying the temperature of the porous trailing edge inserts. Specifically, the electrically heated inserts yield a noise level variation of up to 2.5 dB with the heated one being noisier compared to a baseline, unheated material with similar micro-structure. Resistivity measurements of permeable samples with varying temperature show that flow resistivity increases with the fluid temperature which is in agreement with the reported trailing edge noise increase.

2018 ◽  
Vol 17 (4-5) ◽  
pp. 438-466 ◽  
Author(s):  
Baofeng Cheng ◽  
Yiqiang Han ◽  
Kenneth S Brentner ◽  
Jose Palacios ◽  
Philip J Morris ◽  
...  

The change of helicopter rotor broadband noise due to different surface roughness during ice accretion is investigated. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand facility at The Pennsylvania State University, and the University of Maryland Acoustic Chamber. In both facilities, the measured high-frequency broadband noise increases significantly with increasing surface roughness height. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is thought to be turbulent boundary layer-trailing edge noise. Theory suggests turbulent boundary layer-trailing edge noise scales with Mach number to the fifth power, which is also observed in the experimental data confirming that the dominant broadband noise mechanism during ice accretion is trailing edge noise. A correlation between the ice-induced surface roughness and the broadband noise level is developed. The correlation is strong, which can be used as an ice accretion early detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of two-dimensional airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the turbulent boundary layer-trailing edge noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe’s trailing edge noise model, the increased sound pressure level of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased sound pressure level values agree reasonably well with the experimental results, which are 5.8 and 2.6 dB for large and small roughness height, respectively.


2019 ◽  
Vol 105 (5) ◽  
pp. 814-826 ◽  
Author(s):  
Yuejun Shi ◽  
Seongkyu Lee

This paper presents a new idea of reducing airfoil trailing edge noise using a small bump in the turbulent boundary layer. First, we develop and validate a new computational approach to predict airfoil trailing edge noise using steady RANS CFD, an empirical wall pressure spectrum model, and Howe's diff raction theory. This numerical approach enables fast and accurate predictions of trailing edge noise, which is used to study the noise reduction from the bump for various airfoil geometries and flow conditions at high Reynolds numbers. Three types of bumps, the suction-side bump, pressure-side bump, and both-side bumps, are studied. The results show that all types of bumps are able to reduce far-field noise up to 10 dB compared to clean airfoils, but their impacts are diff erent in terms of the eff ective frequency range. Also, bumps with four diff erent heights are compared with each other to investigate the eff ect of the height of bumps on noise reduction. It is demonstrated that a bump causes velocity deficit within the boundary layer near the wall. This velocity deficit results in reduced turbulence kinetic energy near the wall, which is responsible for trailing edge noise reduction. Overall, this paper demonstrates the potential of a boundary-layer bump in trailing edge noise reduction and sheds light on the physical mechanism of noise reduction with boundary-layer bumps.


Author(s):  
Daniel W. Shannon ◽  
Scott C. Morris ◽  
William K. Blake

The objective of this study was to experimentally investigate the broadband trailing edge noise generated by a sharp trailing edge geometry and an asymmetric blunt edge. The flow field in the vicinity of the sharp trailing edge was found to be equivalent to that of a flat plate turbulent boundary layer. The interaction of the two boundary layers with the edge was responsible for broadband noise generation. The blunt trailing edge geometry exhibited additional complexity, with turbulent boundary layer separation and sound generated by vortex shedding. The measurement program included hot-wire anemometry, unsteady surface pressure, and radiated sound utilizing two microphone arrays. The boundary layer parameters and wall pressure spectra were used to compute the radiated sound from existing scattering theory. These calculations agreed very well with the array data, with differences typically within 2dB over the frequency range considered valid for the theory.


Acoustics ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 393-409 ◽  
Author(s):  
Thomas Fritz Geyer ◽  
Ennes Sarradj

The application of open-porous materials is a possible method to effectively reduce the aerodynamic noise of an airfoil. However, the porous consistency may have a negative effect on the aerodynamic performance of the airfoil, since very often the lift is decreased while the drag increases. In a recent investigation, the generation of trailing edge noise of a set of airfoil models made from different porous materials was examined experimentally. The materials were characterized mainly by their airflow resistivity. Besides the material, the chordwise extent of the porous material was varied, which was done by covering the front part of the porous airfoil with a thin, impermeable adhesive foil. Acoustic measurements were performed in an open jet wind tunnel using microphone array technology, while the aerodynamic performance was measured simultaneously using a six-component balance. In general, both the airflow resistivity and the extent of the porous material have an influence on the trailing edge noise. However, if a suitable material is chosen, the results show that a noticeable reduction of trailing edge noise is possible even with only a small chordwise extent of the porous material.


2020 ◽  
Vol 79 ◽  
pp. 54-66
Author(s):  
Túlio R. Ricciardi ◽  
Walter Arias-Ramirez ◽  
William R. Wolf

Author(s):  
Jean Al-Am ◽  
Vincent Clair ◽  
Alexis Giauque ◽  
Jérôme Boudet ◽  
Fernando Gea-Aguilera

In the present paper, large eddy simulations are performed to study two different mechanisms of Fan/OGV broadband noise: airfoil self-noise and turbulence interaction noise. Firstly, the current study focuses on the prediction of airfoil self-noise from a thin plate with a sharp trailing edge and a chord-based Reynolds number of the order of 106. The boundary layer is tripped to trigger transition to turbulence, and a parameter study is performed to study the influence of the near-wall modeling, grid topology and refinement in the near-wall and wake regions, the spanwise domain extent, and the tripping method. Empirical and analytical models, as well as available DNS data are used for validation purposes. Secondly, the interaction noise from a thin plate impinged by an incoming synthetic turbulent flow is studied. For both cases, far-field acoustic spectra are compared to Amiet’s models for leading and trailing edge noise showing a good agreement.


2021 ◽  
pp. 1475472X2110238
Author(s):  
Gyuzel Yakhina ◽  
Bastien Dignou ◽  
Yann Pasco ◽  
Stéphane Moreau

Several liner-type treatments (three different rectangular grooves covered by three different low porosity wire-mesh screens) on the trailing edge of a flat plate have been investigated in the anechoic wind-tunnel of Université de Sherbrooke. Far-field acoustic directivity measurements have been achieved at Reynolds numbers based on the plate length from [Formula: see text] to [Formula: see text], yielding radiation maps of all possible liner combinations that are then compared to the reference solid flat plate and to the plate with inserts alone. Noise from the flat plate corresponds to dipolar trailing-edge scattering with an extra shallow hump attributed to the unsteady flow recirculation behind the thick plate. When grooves are added, the latter contribution is amplified and additional cavity noise is observed with several tones and humps. The tones are shown to be resonance between high order modified Rossiter modes and cavity depthwise modes. The hump is a combination of drag dipoles and cavity monopoles from the groove row. The addition of screens always reduces the amplification of the dipolar edge scattering but exhibits very different non-linear responses for the cavity noise. The combination screen with the smallest cells and the insert with the shallowest cavities (corresponding to the same type of treatment applied previously on the Controlled-Diffusion airfoil) yields the lowest levels overall, while the screen with intermediate cell size almost always triggers noise amplification and the screen with a coarse mesh has an intermediate behavior. At high frequencies, the previously reported roughness noise is also observed.


Sign in / Sign up

Export Citation Format

Share Document