scholarly journals Citywide Metro-to-Bus Transfer Behavior Identification Based on Combined Data from Smart Cards and GPS

2019 ◽  
Vol 9 (17) ◽  
pp. 3597 ◽  
Author(s):  
Zilin Huang ◽  
Lunhui Xu ◽  
Yongjie Lin ◽  
Pan Wu ◽  
Bin Feng

The aim of this study is to develop a fast data fusion method for recognizing metro-to-bus transfer trips based on combined data from smart cards and a GPS system. The method is intended to establish station- and time-specific elapsed time thresholds for overcoming the limitations of one-size-fits-all criterion which is not sufficiently convincing for different transfer pairs and personal characteristics. Firstly, a data fusion method with bus smart card data and GPS data is proposed to supplement absent bus boarding information in the smart card data. Then, a model for identifying metro-to-bus interchange trips is derived based on two rules about maximal allowable transfer distance and elapsed transfer time threshold. Finally, in tests that used half-monthly field smart card data and GPS data from Shenzhen, China, the results recognized by the proposed method were more consistent with the actual surveyed group transfer time with a P value of 0.17 determined by Mann–Whitney U test. The comparison analysis showed that the proposed method can be widely applied to successfully identify and interpret metro-to-bus interchange behavior beyond a static transfer time threshold of 30 min.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
De Zhao ◽  
Wei Wang ◽  
Ghim Ping Ong ◽  
Yanjie Ji

Smart card data provide valuable insights and massive samples for enhancing the understanding of transfer behavior between metro and public bicycle. However, smart cards for metro and public bicycle are often issued and managed by independent companies and this results in the same commuter having different identity tags in the metro and public bicycle smart card systems. The primary objective of this study is to develop a data fusion methodology for matching metro and public bicycle smart cards for the same commuter using historical smart card data. A novel method with association rules to match the data derived from the two systems is proposed and validation was performed. The results showed that our proposed method successfully matched 573 pairs of smart cards with an accuracy of 100%. We also validated the association rules method through visualization of individual metro and public bicycle trips. Based on the matched cards, interesting findings of metro-bicycle transfer have been derived, including the spatial pattern of the public bicycle as first/last mile solution as well as the duration of a metro trip chain.


2013 ◽  
Vol 392 ◽  
pp. 261-266 ◽  
Author(s):  
Yuan Liang Zhang ◽  
Jong Ho Park ◽  
Nam O Sel ◽  
Kil To Chong

Dead Reckoning (DR) is one of the frequently used navigation system for a mobile robot. It provides short term navigation information but its error can accumulate over time without limit. The Global Positioning System (GPS) can be used for localization and navigation outdoors wherein the removal of the SA Policy improved the accuracy of the GPS for civilian use but the error is still quite large. Standard Differential GPS (DGPS) can be used to achieve an error of less than one meter but the costs are prohibitive in terms of commercializing it into the mass market. In this research study, a cheap GPS receiver was used for the navigation system of a mobile robot outdoors in which a new Kalman-filter based DR/GPS data fusion method was utilized. This proposed method is based on the characteristics of the GPS receiver. Fusing the data from the GPS receiver and the DR system provided precise navigation information for the mobile robot. Simulation was performed to check and validate the effectiveness of the proposed fusion method and good results showed its potential for mobile robot navigation outdoors.


2020 ◽  
Vol 7 (6) ◽  
pp. 1489-1497
Author(s):  
Tongle Zhou ◽  
Mou Chen ◽  
Jie Zou

2021 ◽  
Vol 93 ◽  
pp. 103046
Author(s):  
Shasha Liu ◽  
Toshiyuki Yamamoto ◽  
Enjian Yao ◽  
Toshiyuki Nakamura

Sign in / Sign up

Export Citation Format

Share Document