scholarly journals Engine Speed Control System for Improving the Fuel Efficiency of Agricultural Tractors for Plowing Operations

2019 ◽  
Vol 9 (18) ◽  
pp. 3898 ◽  
Author(s):  
Jin Woong Lee ◽  
Su Chul Kim ◽  
Jooseon Oh ◽  
Woo-Jin Chung ◽  
Hyun-Woo Han ◽  
...  

This study was conducted to develop a load-sensitive engine speed control system to maximize the fuel efficiency of an agricultural tractor. The engine speed controller was developed through a model-based design approach using a tractor simulation model. The simulated engine speed and torque values were measured with an average error range of 1.4–4.9% compared to results obtained from field experiments. Using the tractor model, the gain parameters of the proportional–integral (PI) controller were optimized under the step, ramp, and actual load conditions. The simulation results using the actual load showed that the engine speed could be adjusted to within 2–3% of the desired value using the proposed engine speed controller. The throttle control system was constructed using four parts of a tractor engine, a microprocessor with an engine speed control algorithm, a throttle actuator, and a data acquisition system. Using the developed system, the operating engine speed values showed an average 1.17 % error compared to the desired engine speed. Three fuel efficiency parameters were used for evaluating the fuel-saving performance of the control system: specific volumetric fuel consumption (SVFC), fuel consumption per tilled area (FCA), and fuel consumption per work hour (FC). The values for SVFC, FCA, and FC obtained from the engine speed control system during plowing operations were 23.03–57.87%, 4.11–42.06%, and −7.24–38.48%, respectively, showing an improvement over the same operations without the control system.

Author(s):  
Peiyan Sun ◽  
Xiang Li ◽  
Changzhong Man ◽  
Yunbang Tang ◽  
Yi Wan

Spark ignition engines perform with low power efficiency and low fuel economy for which the throttling loss is the main reason. This paper introduces a new kind of intake control system-series valve speed control system that consists of two intake valves connected in series. It is operated without throttle to reduce the engine intake loss and thereby improve fuel economy under medium- and low-load working conditions. Through experiments, we confirm that compared with the basal spark ignition engine, the spark ignition engine with series valve speed control system can reduce fuel consumption, and the maximum fuel consumption rate can be increased up to 12% at the engine speed of 3000 r/min.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Tianqian Xia ◽  
Xianghua Huang

Abstract A method of variable speed control system for turboprop engine is presented in this paper. Firstly, the steady operation state of turboprop engine is analyzed, and the operating line is figured out in the steady state characteristic diagram, which is the design basis of Engine Thrust Management System (ETMS). Secondly, the reference model sliding mode multivariable control is used to design the control law to follow the speed instructions given by ETMS. Finally, the optimization of the minimum fuel consumption operating curve is realized, and the control system designed is applied to a numerical model of a turboprop engine. The simulation results show that compared with the constant speed control system, the variable speed control system can reduce the specific fuel consumption by 2.37 % on average and 3.1 % in steady state conditions. Furthermore, the method can enable the pilot to manipulate the turboprop aircraft by using only one throttle lever, which can greatly reduce the pilot operation burden.


2014 ◽  
Vol 666 ◽  
pp. 188-193
Author(s):  
Ye Ni Li ◽  
Shui Xuan Chen ◽  
Hu Xiu Xu

By researching the characteristics of hydraulic torque forklifts, developed a device which achieved inching function. It can detect position of the handle, using Delta PLC controlled stepper motor driven screw movement, to achieve the control of the engine speed, and modify the control parameters via touch-screen on-site commissioning, to achieve a truck at idle operation, through the manipulation of the handle can Smooth and stable pan, lift or tilt operation, making operation more convenient forklift and reduces the operator's labor intensity, a high value market applications.


2012 ◽  
Vol 152-154 ◽  
pp. 1589-1594 ◽  
Author(s):  
Xiao Qun Shen ◽  
Yu Xiang Su

The traditional PID control effect is not ideal when the controlled object is nonlinear and contains variable parameters. In order to adapt marine diesel engines to variable working conditions, the fuzzy-PID control method was proposed to be used in the speed control system of marine diesel engine to realize online adjustment of PID parameters. The composition of marine diesel engine speed control system was introduced, and the design of fuzzy–PID controller was analyzed in detail. The fuzzy-PID diesel engine speed governor was simulated through MATLAB. The simulation results show that fuzzy-PID can improve the system dynamic performance, reduce system oscillation and improve the response speed. The results also show that the fuzzy-PID marine diesel engine speed governor has high anti-interference ability and strong robustness.


IEEE ISR 2013 ◽  
2013 ◽  
Author(s):  
Byung-Yun Park ◽  
Byung-Mo Cho ◽  
Kyung-Hwan Lee ◽  
Jungsan Cho ◽  
Sangdeok Park ◽  
...  

2013 ◽  
Vol 462-463 ◽  
pp. 761-765
Author(s):  
Xin Mei Liu ◽  
Xiao Fei Li

In order to solve the problem of poor performance of the planar motor speed control system under PID control, the paper proposed an auto-disturbance rejection control scheme, on a sudden load or some disturbances, which solved the contradiction between "rapidity" and "overshoot" under PID control by using ADRC to estimation, compensation and control. This paper described in detail the composition of ADRC and the construction of planar motor speed controller. And on the sudden load and friction, the results of comparing the auto-disturbances rejection control and PID control show that the ADRC has better dynamic performances and robustness.


Sign in / Sign up

Export Citation Format

Share Document