scholarly journals Outdoor Visible Light Communication in Intelligent Transportation Systems: Impact of Snow and Rain

2019 ◽  
Vol 9 (24) ◽  
pp. 5453 ◽  
Author(s):  
Reham W. Zaki ◽  
Heba A. Fayed ◽  
Ahmed Abd El Aziz ◽  
Moustafa H. Aly

A comprehensive study of outdoor visible light communication (VLC) under snow and rain effects has been conducted in this paper. This paper analyzes the expected rain attenuation of Marshal, Carbonneau, and Japan models at different precipitation levels. Snow attenuation is measured in wet and dry situations at various precipitation levels as well. Therefore, a full comparison is carried out for different attenuation effects on certain outdoor VLC design characteristics such as the maximum signal-to-noise ratio (SNR), optical power received, bit error rate (BER), and maximum coverage area. VLC with various modulation techniques is considered. The ON–OFF Keying (OOK), L-Pulse Position Modulation (L-PPM), Inverse L-Pulse Position Modulation (I-L-PPM), and Subcarrier Binary Phase-Shift Keying (SC-BPSK) are investigated. The simulation results show a considerable difference in the information received under different weather conditions depending on the type of modulation scheme used. The simulation has been done on a two-lane road, and a green traffic light-emitting diode (LED) with a wavelength of 505 nm is used as a transmitter. A non-imaging concentrator coupled with a photodetector is considered to be a cost-effective receiver.

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 948
Author(s):  
Jenn-Kaie Lain ◽  
Yan-He Chen

By modulating the optical power of the light-emitting diode (LED) in accordance with the electrical source and using a photodetector to convert the corresponding optical variation back into electrical signals, visible light communication (VLC) has been developed to achieve lighting and communications simultaneously, and is now considered one of the promising technologies for handling the continuing increases in data demands, especially indoors, for next generation wireless broadband systems. During the process of electrical-to-optical conversion using LEDs in VLC, however, signal distortion occurs due to LED nonlinearity, resulting in VLC system performance degradation. Artificial neural networks (ANNs) are thought to be capable of achieving universal function approximation, which was the motivation for introducing ANN predistortion to compensate for LED nonlinearity in this paper. Without using additional training sequences, the related parameters in the proposed ANN predistorter can be adaptively updated, using a feedback replica of the original electrical source, to track the LED time-variant characteristics due to temperature variation and aging. Computer simulations and experimental implementation were carried out to evaluate and validate the performance of the proposed ANN predistorter against existing adaptive predistorter schemes, such as the normalized least mean square predistorter and the Chebyshev polynomial predistorter.


Author(s):  
Navin Kumar ◽  
Luis Nero Alves ◽  
Rui L. Aguiar

There is great concern over growing road accidents and associated fatalities. In order to reduce accidents, improve congestion and offer smooth flow of traffic, several measures, such as providing intelligence to transport, providing communication infrastructure along the road, and vehicular communication, are being undertaken. Traffic safety information broadcast from traffic lights using Visible Light Communication (VLC) is a new cost effective technology which assists drivers in taking necessary safety measures. This chapter presents the VLC broadcast system considering LED-based traffic lights. It discusses the integration of traffic light Roadside Units (RSUs) with upcoming Intelligent Transportation Systems (ITS) architecture. Some of the offered services using this technology in vehicular environment together with future directions and challenges are discussed. A prototype demonstrator of the designed VLC systems is also presented.


2017 ◽  
Vol 402 ◽  
pp. 330-335 ◽  
Author(s):  
Luhong Mao ◽  
Cheng Li ◽  
Honglei Li ◽  
Xiongbin Chen ◽  
Xurui Mao ◽  
...  

Author(s):  
Navin Kumar ◽  
Luis Nero Alves ◽  
Rui L. Aguiar

There is great concern over growing road accidents and associated fatalities. In order to reduce accidents, improve congestion and offer smooth flow of traffic, several measures, such as providing intelligence to transport, providing communication infrastructure along the road, and vehicular communication, are being undertaken. Traffic safety information broadcast from traffic lights using Visible Light Communication (VLC) is a new cost effective technology which assists drivers in taking necessary safety measures. This chapter presents the VLC broadcast system considering LED-based traffic lights. It discusses the integration of traffic light Roadside Units (RSUs) with upcoming Intelligent Transportation Systems (ITS) architecture. Some of the offered services using this technology in vehicular environment together with future directions and challenges are discussed. A prototype demonstrator of the designed VLC systems is also presented.


Author(s):  
Aleksandra Kostic-Ljubisavljevic ◽  
Branka Mikavica

With the development of light emitting diodes (LEDs), the communication in visible light spectrum, visible light communication (VLC), becomes an alternative to the existing wireless technologies. Integration of VLC systems with intelligent transportation systems (ITS) can significantly improve many aspects of transportation and traffic. The use of unlicensed bandwidth and wider implementation of VLC LED lighting, both in infrastructure and in vehicles, provide an energy-efficient data transmission with sufficiently large data rates at low cost. The application of VLC systems is still at an early stage of the development. However, due to numerous advantages, the wider adoption of VLC systems is expected in near future. This chapter presents an analysis of the possibilities of VLC application in ITS scenarios. Main characteristics of VLC in ITS in terms of architecture, modulation and standardization are addressed. Some challenges and open issues are also emphasized.


2020 ◽  
Vol 9 (3) ◽  
pp. 35 ◽  
Author(s):  
Tassadaq Nawaz ◽  
Marco Seminara ◽  
Stefano Caputo ◽  
Lorenzo Mucchi ◽  
Jacopo Catani

This work presents a characterization of a low-cost, low-latency Visible Light Communication (VLC) prototype for infrastructure-to-vehicle (I2V) communication for future Intelligent Transportation Systems (ITS). The system consists of a regular traffic light as a transmitter (the red light is modulated with the information), and a photodetector as a receiver. The latter is equipped with low-cost Fresnel lenses as condensers, namely, 1 ′ ′ Fresnel and 2 ′ ′ Fresnel, to increase the optical gain of the system at the receiver. The system is capable of Active Decode and Relay (ADR) of information to further incoming units. The experimental characterization of amplitude and Packet Error Rate (PER) for the proposed system has been performed for distances up to 50 m. The results show that by incorporating the 2 ′ ′ Fresnel lens in the photodetector, an error free ( PER ≤ 10 − 5 ) I2V communication is established up to 50 m. Furthermore, the prototype can be used for both broadcast and beaconing transmission modes. This low-cost VLC-based system could offer sub-millisecond latency in the full ADR process for distances up to 36 m, which makes it suitable for integration in Cellular-V2X (C-V2X) and 5G platforms.


Communication based on visible spectrum is a mode of communication wireless technology using the visible spectra by typical transmitters and receivers.Thistechnology, in developing Intelligent Transportation is a cost-reuction method. Currently Radio Frequency(RF)-based technology is used for road safety application and ripping out this method entirely by replacing it with VLC is not particularly feasible, so that the idea is retrofiting system that currently uses to work with combining both RF and VLC technologies. Here paper presents the specific technologies of wireless methodology for the Intelligent Transportation, which helps to minimize the occurrence of road accidents, optimize the road traffic and improve the safe of devices and roadside users. Application based on communication of vehicles, and vehicle to infrastructure has emerged the best solutions to improve traffic safety.It is on, visible light communication withbig potential ofsimple design for functional efficiency and large area distribution along with usage of Wi-Fi. The intention of this survey on a wide field, Intelligent Transportation Systems functioning with Wi-Fi and Li-Fi is discussed with its real time uses, technologies in communications


Sign in / Sign up

Export Citation Format

Share Document