scholarly journals Statistical Characteristics of Major Sudden Stratospheric Warming Events in CESM1-WACCM: A Comparison with the JRA55 and NCEP/NCAR Reanalyses

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 519 ◽  
Author(s):  
Can Cao ◽  
Yuan-Hao Chen ◽  
Jian Rao ◽  
Si-Ming Liu ◽  
Si-Yu Li ◽  
...  

Using the historical simulation from the CESM1-WACCM coupled model and based on the JRA55 and NCEP/NCAR reanalyses, the general statistical characteristics of the major sudden stratospheric warmings (SSWs) in this stratosphere-resolving model are assessed. The statistical and diagnostic results show that CESM1-WACCM can successfully reproduce the frequency of SSW events. As in the JRA55 and NCEP/NCAR reanalyses, five or six SSW events, on average, occur in a model decade. The seasonal distribution of SSWs is also well simulated with the highest frequency in January (35%). The unprecedented low SSW frequency observed in 1990s from the two reanalyses is also identified in a model decade (1930s). In addition, the overestimated duration of SSW events in the earlier WACCM version is not identified in CESM1-WACCM when compared with the two reanalyses. The model can well reproduce the downward propagation of the stratospheric anomaly signals (i.e., zonal wind, height, temperature) following SSWs. Both the modelling and observational evidences indicate that SSWs are proceeded by the positive Pacific–North America (PNA) and negative Western Pacific (WP) pattern. The negative North Atlantic Oscillation (NAO) develops throughout the SSW life cycle, which is successfully modeled. A cold Eurasian continent–warm North American continent pattern is observed before SSWs at 850 h Pa, while the two continents are anomalously cold after SSWs in both the reanalyses and the model.

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 679 ◽  
Author(s):  
Si-Ming Liu ◽  
Yuan-Hao Chen ◽  
Jian Rao ◽  
Can Cao ◽  
Si-Yu Li ◽  
...  

After the recent release of the historical runs by community Earth system model version 2–the whole atmosphere community climate model (CESM2-WACCM), the major sudden stratospheric warming (SSW) events in this model and in its previous version (CESM1-WACCM) are compared based on a modern reanalysis (JRA55). Using the World Meteorological Organization (WMO) definition of SSWs and a threshold-based classification method that can describe the polar vortex morphology, SSWs in models and the reanalysis are further classified into two types, vortex displacement SSWs and vortex split SSWs. The general statistical characteristics of the two types of SSW events in the two model versions are evaluated. Both CESM1-WACCM and CESM2-WACCM models are shown to reproduce the SSW frequency successfully, although the circulations differences between vortex displacement SSWs and vortex split SSWs in CESM2-WACCM are smaller than in CESM1-WACCM. Composite polar temperature, geopotential height, wind, and eddy heat flux anomalies in both the two models and the reanalysis show similar evolutions. In addition, positive Pacific–North America and negative Western Pacific patterns in the troposphere preceding vortex displacement and split SSWs are observed in both observations and the models. The strong negative North Atlantic oscillation-like pattern, especially after vortex split SSW onset, is also identified in models. The near-surface cold Eurasia–warm North America pattern before both types of SSW onset, the warm Eurasia–cold North America pattern after displacement SSW onset, and the cold Eurasia–cold North America pattern after split SSW onset are consistently identified in JRA55, CESM1-WACCM, and CESM2-WACCM, although the temperature anomalies after the split SSW onset in CESM2-WACCM are somewhat underestimated.


1982 ◽  
Vol 2 (4) ◽  
pp. 285-308 ◽  
Author(s):  
Thomas H. Mc Govern

During the Viking period, Norse seafarers from Greenland attempted to plant a settlement on the North American continent. This Vinland settlement faltered in its early phases and was not successful. Its failure may be best understood from the broader perspective of the Scandinavian expansion across the North Atlantic islands which began ca. AD 800. Adaptive shifts in the older North Atlantic colonies, geographical factors, and the resistance of Native Americans may have combined to doom this Western-most medieval colony.


2021 ◽  
Vol 2 (1) ◽  
pp. 163-180
Author(s):  
Federico Fabiano ◽  
Virna L. Meccia ◽  
Paolo Davini ◽  
Paolo Ghinassi ◽  
Susanna Corti

Abstract. Future wintertime atmospheric circulation changes in the Euro–Atlantic (EAT) and Pacific–North American (PAC) sectors are studied from a weather regimes perspective. The Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6) historical simulation performance in reproducing the observed regimes is first evaluated, showing a general improvement in the CMIP6 models, which is more evident for EAT. The circulation changes projected by CMIP5 and CMIP6 scenario simulations are analysed in terms of the change in the frequency and persistence of the regimes. In the EAT sector, significant positive trends are found for the frequency and persistence of NAO+ (North Atlantic Oscillation) for SSP2–4.5, SSP3–7.0 and SSP5–8.5 scenarios with a concomitant decrease in the frequency of the Scandinavian blocking and Atlantic Ridge regimes. For PAC, the Pacific Trough regime shows a significant increase, while the Bering Ridge is predicted to decrease in all scenarios analysed. The spread among the model responses is linked to different levels of warming in the polar stratosphere, the tropical upper troposphere, the North Atlantic and the Arctic.


1962 ◽  
Vol 60 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Margaret D. Beech ◽  
A. E. Duxbury ◽  
Peter Warner

This paper consists of an epidemiological study of 52 cases of Q fever occurring in metropolitan Adelaide in 1957 and also a description of the results of a survey of 516 sera obtained from abattoir workers.The only case occurring outside the abattoirs was a dairy farmer who probably became infected while visiting the abattoirs. If this were so the incubation period (35 days) of his disease would have been exceptionally long.The general features of the outbreak, which lasted several months, differed from those on the North American continent in that the latter occurred explosively within a few days with very high attack rates. The situation in the Adelaide abattoirs is similar to that in Brisbane, where the disease appears to be endemic. However, unlike in Adelaide, cases are commonly recognized outside the abattoirs in Brisbane.In the abattoirs the disease affected mainly inspectors, those working on killing beef, and those working on offal. Mutton workers were not so severely affected. However, all these groups had similar incidences of low titre antibodies suggesting that in the past Q fever spread equally in all killing departments. In departments not directly associated with slaughtering the incidence both of cases in 1957 and low titre antibodies was relatively small.It was suggested that the epidemiological features of Q fever in Adelaide could be explained by the irregular appearance of animals from infected herds situated perhaps in Queensland—a known endemic area. Perhaps the appearance of such animals in the Adelaide abattoirs might be governed by meteorological conditions such that they were prevented from going to the ordinarily most convenient slaughterhouse.


2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


Sign in / Sign up

Export Citation Format

Share Document