scholarly journals Influence of Thermal Effects on Qinghai-Tibet Plateau on Air Quality in Typical Regions of China in Winter

Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Yanjun Li ◽  
Xingqin An ◽  
Guangzhou Fan ◽  
Chao Wang ◽  
Yang Zhao ◽  
...  

In this paper, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) monthly average reanalysis data from 1954 to 2017, haze days observation data from 1954 to 2017, and PM2.5 daily average mass concentration data from 2013 to 2017 are collected and collated. Firstly, the atmospheric apparent heat source on the Qinghai-Tibet Plateau is estimated based on thermodynamic equations. The correlation between the atmospheric apparent heat source (Q1) on the Qinghai-Tibet Plateau and the air quality in China, especially in the five typical regions (Beijing-Tianjin-Hebei, Fen-Wei Plain, Yangtze River Delta, Pearl River Delta, and Sichuan-Chongqing regions) is analyzed and studied. Through comprehensive diagnosis and synthesis, the differences of the three-dimensional spatial distribution of the circulation field and temperature field (planes and sections) in China and the typical regions in the strong and weak years of the apparent heat source Q1 on the Qinghai-Tibet Plateau in winter are compared, and the different distribution characteristics of the climate circulation background causing the strong and weak years of Q1 on the Qinghai-Tibet Plateau and the influence mechanism on the air quality in different regions in China are discussed. The results show that the spatial distribution of correlation between Q1 on the Qinghai-Tibet Plateau and PM2.5 in December has a northeast-southwest boundary. There is a negative correlation in the southeast region of the boundary, with heavy pollution when the cold source is strong and light pollution when the cold source is weak, while there is a positive correlation in the northwest region of the boundary, with light pollution when the cold source is strong and heavy pollution when the cold source is weak. The Q1 on Qinghai-Tibet Plateau is negatively correlated with air pollution in Beijing-Tianjin-Hebei and Fen-Wei Plain located in the northwest region of the boundary but positively correlated with air pollution in the Yangtze River Delta, Pearl River Delta, and Sichuan-Chongqing regions located in the southeast region of the boundary. In the cold source strong year, the northerly winds are stronger in the middle and high latitudes, and there is an abnormal northerly downward flow in the southeast region, thus the pollution is aggravated by the suppression of convection–diffusion in a downward flow. However, abnormal updraft in the northwest region exists, reducing pollution. In the cold source weak year, the situation is just the opposite.

2018 ◽  
Author(s):  
Junlan Feng ◽  
Yan Zhang ◽  
Shanshan Li ◽  
Jingbo Mao ◽  
Allison P. Patton ◽  
...  

Abstract. The Yangtze River Delta (YRD) and the megacity of Shanghai are host to one of the busiest port clusters in the world, the region also suffers from high levels of air pollution. The goal of this study was to estimate the contributions of shipping to emissions, air quality, and population exposure and characterize their dependence on the geographic spatiality of ship lanes from the regional scale to city scale for 2015. The WRF-CMAQ model was used to simulate the influence of coastal and inland-water shipping, in port emissions, shipping-related cargo transport on air quality and, population-weighted concentrations, a measure of human exposure. Our results showed that the impact of shipping on air quality in the YRD was attributable primarily to shipping emissions within 12 NM of shore, but emissions coming from the coastal area of 24 to 96 NM still contributed substantially to ship-related PM2.5 concentrations in YRD. The overall contribution of ships to PM2.5 concentration in YRD could reach to 4.62 μg/m3 in summer when monsoon winds transport shipping emissions onshore. In Shanghai city, inland-water going ships were major contributors (40–80 %) to the shipping impact on urban air quality. Given the proximity of inland-water ships to urban populations of Shanghai, the emissions of inland-water ships contributed more to population-weighted concentrations. These research results provide scientific evidence to inform policies for controlling future shipping emissions; in particular, stricter standards could be considered for the ships on inland rivers and other waterways close to residential regions.


2020 ◽  
Author(s):  
Jianlin Hu ◽  
Lin Li ◽  
Jingyi Li ◽  
Xueying Wang ◽  
Kangjia Gong

<p>Although the air quality in China has been improved by collaborative efforts dedicating to mitigate the haze pollution, PM2.5 concentrations still remain high levels and the issue of increasing O<sub>3</sub> concentration has attracted more attention of the public. The YRD region has been suffering from both the PM2.5 and O3 pollution problems. To investigate the formation mechanisms and sources of PM2.5 and O3 in this region, a comprehensive EXPLORE-YRD campaign (EXPeriment on the eLucidation of theatmospheric Oxidation capacity and aerosol foRmation, and their Effects inYangtze River Delta) was carried out in May - June 2018. In this study, we investigate the contributions of different source categories to PM2.5 and O<sub>3</sub>. A source-oriented 3-D air quality model (CMAQ) was applied to analyze contributions of different emission sources to PM2.5 and O<sub>3 </sub>in the YRD region. Emissions were divided into eight source categories: industry, power, transportation, residential, agriculture, biogenic, wildfire, and other countries. Contribution from individual source category was quantified. The importance of anthropogenic and natural sources to PM2.5 and O<sub>3</sub> was discussed.</p>


2020 ◽  
Author(s):  
Ning Yang ◽  
Yanru Bai ◽  
Yong Zhu ◽  
Nan Ma ◽  
Qiaoqiao Wang

<p>In the last six years, China has experienced significant improvement in air quality due to great emission reduction efforts. However, ozone concentrations are still slowly increasing in three major regions of eastern China, respectively Jing-Jin-Ji(JJJ), Yangtze River Delta region(YRD) and Pearl River Delta region(PRD). It is shown from the 2015-2018 national urban air quality real-time release platform that the surface ozone in JJJ, YRD and PRD has increased each year and reached the highest in 2018. The monthly ozone concentration peaked in June in almost all cities of JJJ, while it had multiple peaks in other two regions (summer and autumn in YRD - and February, May and September in PRD). Simulation with a chemical transport model(GEOS-Chem) indicates that the formation of ozone is affected by the optical properties of PM<sub>2.5</sub> and also the heterogeneous uptake of N<sub>2</sub>O<sub>5</sub> on sea salt aerosol.</p>


2013 ◽  
Vol 13 (8) ◽  
pp. 21507-21540
Author(s):  
X. Fu ◽  
S. X. Wang ◽  
Z. Cheng ◽  
J. Xing ◽  
B. Zhao ◽  
...  

Abstract. During 1 to 6 May 2011, a dust event was observed in the Yangtze River Delta region (YRD). The highest PM10 concentration reached over 1000 μg m−3 and the visibility was below 3 km. In this study, the Community Multi-scale Air Quality modeling system (CMAQ5.0) coupled with an in-line windblown dust model was used to simulate the formation, spatial and temporal characteristics of this dust event, and analyze its impacts on deposition and photochemistry. The threshold friction velocity for loose smooth surface in the dust model was revised based on Chinese data to improve the model performance. The comparison between predictions and observations indicates the revised model can reproduce the transport and pollution of the event. The simulation results show that the dust event was affected by formation and transport of Mongolian cyclone and cold air. Totally about 695 kt dust particles (PM10) were emitted in Xinjiang Province and Mongolia during 28 to 30 April, the dust band swept northern, eastern China and then arrived in the YRD region on 1 May 2011. The transported dust particles increased the mean surface layer concentrations of PM10 in the YRD region by 372% during 1 to 6 May and the impacts weakened from north to south due to the removal of dust particles along the path. Accompanied by high PM concentration, the dry deposition, wet deposition and total deposition of PM10 in the YRD reached 184.7 kt, 172.6 kt and 357.32 kt, respectively. These deposited particles are very harmful because of their impacts on urban environment as well as air quality and human health when resuspending in the atmosphere. Due to the impacts of mineral dust on atmospheric photolysis, the concentrations of O3 and OH were reduced by 1.5% and 3.1% in the whole China, and by 9.4% and 12.1% in the YRD region, respectively. The work of this manuscript is meaningful for understanding the dust emissions in China as well as for the application of CMAQ in Asia. It is also helpful to understand the formation mechanism and impacts of dust pollution in the YRD.


Sign in / Sign up

Export Citation Format

Share Document