scholarly journals Morphological Traits Influence the Uptake Ability of Priority Pollutant Elements by Hypnum cupressiforme and Robinia pseudoacacia Leaves

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 148
Author(s):  
Fiore Capozzi ◽  
Anna Di Palma ◽  
Maria Cristina Sorrentino ◽  
Paola Adamo ◽  
Simonetta Giordano ◽  
...  

In this paper, a biomonitoring survey of airborne priority pollutant elements was carried out using leaves of native black locust and moss bags filled with Hypnum cupressiforme. The aims of the work were (i) to evaluate if mosses and leaves provide similar information regarding the accumulation of the elements of environmental concern (As, Be, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, V, Zn, Tl); (ii) to evaluate if leaf traits are significantly involved in the uptake mechanisms. Hypnum transplants showed elemental contents generally higher than R. pseudoacacia leaves, despite the shorter exposure time. Moss accumulated larger amounts of elements linked to PM and the resuspension of soil dust. Based on the calculation of deposition flux for each element, R. pseudoacacia showed lower values for most elements—except Cr, Mo and Zn—indicating that uptake takes place both by deposition on the leaf surface and absorption via the root. Leaf traits (micromorphology of surface) play an important role in the interception and retention of PM-linked elements. Hypnum transplanted in bags was confirmed to be a powerful bio-accumulator of airborne elements; by contrast, R. pseudoacacia, with a smooth surface and scarce trichomes, showed a limited ability in airborne element retention. Therefore, widely diffused species, well-adapted to anthropized environments, such as black locust, not always can be considered as good biomonitors. The results are discussed in comparison to other vascular plant species used in biomonitoring studies.

2021 ◽  
Author(s):  
Joel L. Scott ◽  
Chelcy F. Miniat ◽  
Jessie Motes ◽  
Sarah L. Ottinger ◽  
Nina Wurzburger ◽  
...  

BioResources ◽  
2012 ◽  
Vol 7 (2) ◽  
Author(s):  
Yao Chen ◽  
Jianmin Gao ◽  
Yongming Fan ◽  
Mandla A. Tshabalala ◽  
Nicole M. Stark

2018 ◽  
Vol 79 (2) ◽  
pp. 113-117
Author(s):  
Szymon Bijak ◽  
Katarzyna Orzoł

Abstract This paper investigates the slenderness of black locust (Robinia pseudoacacia) trees in relation to the biosocial status of the trees, stand age class, crown parameters and habitat type. The research material was collected on 35 research plots in the Sława Śląska, Sulechów and Głogów forest districts in western Poland and comprises 1058 trees. For each tree, we measured height (h) as well as diameter at breast height (d) and determined its biosocial status (Kraft class), crown length (CL) and relative crown length (rCL). The age class and habitat type were assessed at the plot level. Because the obtained values for slenderness (s=h/d) diverged significantly from the normal distribution, we used Kruskal-Wallis and Mann-Whitney tests to investigate the influence of the above-mentioned parameters on the h/d ratio. Black locust slenderness ranged from 0.31 to 1.95 with an average of 0.91 (standard deviation 0.24). It furthermore differed significantly between Kraft classes (the higher the biosocial status, the lower the slenderness) and age classes (the older the trees, the lower their slenderness). We also found a significant effect of the habitat type (in oligotrophic sites trees formed more slender trunks than in mesotrophic sites) and crown parameters on the h/d ratio (decreasing with increasing crown length and relative crown length). The obtained results suggest that the slenderness of black locust does not differ substantially from native broadleaved trees in Poland.


2019 ◽  
Vol 25 (1-2) ◽  
Author(s):  
Zs. Keserű ◽  
K. Rédei ◽  
J. Rásó ◽  
T. Kiss

Black locust (Robinia pseudoacacia L.) is a valuable stand-forming tree species introduced to Europe approximately 400 years ago from North America. Today it is widely planted throughout the world, first of all for wood production. In Hungary, where black locust has great importance in the forest management, it is mainly propagated by seeds. But since the seed-raised plants present a great genetic variation, this type of propagation can not be used for Robinia’s improved cultivars. In the Hungarian black locust clonal forestry, propagation from root cuttings can be used for reproduction of superior individuals or cultivars in large quantities. However, this method demands more care than raising seedlings from seeds and can be applied with success in well-equipped nurseries.


2014 ◽  
pp. 9-31
Author(s):  
Sinisa Andrasev ◽  
Savo Roncevic ◽  
Petar Ivanisevic ◽  
Sasa Pekec ◽  
Martin Bobinac

This paper presents the elements of growth of black locust trees and stands in 15 sample plots in Vojvodina, at the age of 21-68 years. In each sample plot, based on soil profile horizons the determined soil type was chernozem as well as its lower systematic units (subtype, variety and form), according to the Skoric et al. (1985) classification. On the basis of the mean stand heights (hL), the stands on the subtype of chernozem on loess and loesslike sediments belong to height classes I-IV, and stands on calcareous aeolian sand to classes II-V (according to R e d e i et al. 2014), which indicates their considerable variability with respect to productivity within the determined subtypes of chernozem. Significant differences at the level of chernozem subtypes were found between the mean heights (p = 0.032), but not between the mean diameters (p = 0.083). The mean diameters at breast height in the studied black locust stands were on average lower than the models of diameter growth for the appropriate height classes and determined by a larger number of trees per hectare than in the tables (R e d e i et al, 2014). The volume per hectare is higher than in the tables also being conditioned by the large number of trees per hectare.


2021 ◽  
Vol 7 (8) ◽  
pp. 671
Author(s):  
Xiao Lou ◽  
Xiangyu Zhang ◽  
Yu Zhang ◽  
Ming Tang

The simultaneous effects of arbuscular mycorrhizal (AM) fungi and abscisic acid (ABA) on the tolerance of plants to heavy metal (HM) remain unclear. A pot experiment was carried out to clarify the effects of simultaneous applications of AM fungi and ABA on plant growth, Zn accumulation, endogenous ABA contents, proline metabolism, and the oxidative injury of black locust (Robinia pseudoacacia L.) exposed to excess Zn stress. The results suggested that exogenously applied ABA positively enhanced AM colonization, and that the growth of plants only with AM fungi was improved by ABA application. Under Zn stress, AM inoculation and ABA application increased the ABA content in the root/leaf (increased by 48–172% and 92%, respectively) and Zn content in the root/shoot (increased by 63–152% and 61%, respectively) in AM plants, but no similar trends were observed in NM plants. Additionally, exogenous ABA addition increased the proline contents of NM roots concomitantly with the activities of the related synthases, whereas it reduced the proline contents and the activity of Δ1-pyrroline-5-carboxylate synthetase in AM roots. Under Zn stress, AM inoculation and ABA application decreased H2O2 contents and the production rate of O2, to varying degrees. Furthermore, in the roots exposed to Zn stress, AM inoculation augmented the activities of SOD, CAT, POD and APX, and exogenously applied ABA increased the activities of SOD and POD. Overall, AM inoculation combined with ABA application might be beneficial to the survival of black locust under Zn stress by improving AM symbiosis, inhibiting the transport of Zn from the roots to the shoots, increasing the distribution of ABA in roots, and stimulating antioxidant defense systems.


2015 ◽  
Vol 6 (2) ◽  
pp. 201-217 ◽  
Author(s):  
Maria Emilia Malvolti ◽  
Irene Olimpieri ◽  
Paola Pollegioni ◽  
Klára Cseke ◽  
Zsolt Keserű ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document