scholarly journals The Synergy of Arbuscular Mycorrhizal Fungi and Exogenous Abscisic Acid Benefits Robinia pseudoacacia L. Growth through Altering the Distribution of Zn and Endogenous Abscisic Acid

2021 ◽  
Vol 7 (8) ◽  
pp. 671
Author(s):  
Xiao Lou ◽  
Xiangyu Zhang ◽  
Yu Zhang ◽  
Ming Tang

The simultaneous effects of arbuscular mycorrhizal (AM) fungi and abscisic acid (ABA) on the tolerance of plants to heavy metal (HM) remain unclear. A pot experiment was carried out to clarify the effects of simultaneous applications of AM fungi and ABA on plant growth, Zn accumulation, endogenous ABA contents, proline metabolism, and the oxidative injury of black locust (Robinia pseudoacacia L.) exposed to excess Zn stress. The results suggested that exogenously applied ABA positively enhanced AM colonization, and that the growth of plants only with AM fungi was improved by ABA application. Under Zn stress, AM inoculation and ABA application increased the ABA content in the root/leaf (increased by 48–172% and 92%, respectively) and Zn content in the root/shoot (increased by 63–152% and 61%, respectively) in AM plants, but no similar trends were observed in NM plants. Additionally, exogenous ABA addition increased the proline contents of NM roots concomitantly with the activities of the related synthases, whereas it reduced the proline contents and the activity of Δ1-pyrroline-5-carboxylate synthetase in AM roots. Under Zn stress, AM inoculation and ABA application decreased H2O2 contents and the production rate of O2, to varying degrees. Furthermore, in the roots exposed to Zn stress, AM inoculation augmented the activities of SOD, CAT, POD and APX, and exogenously applied ABA increased the activities of SOD and POD. Overall, AM inoculation combined with ABA application might be beneficial to the survival of black locust under Zn stress by improving AM symbiosis, inhibiting the transport of Zn from the roots to the shoots, increasing the distribution of ABA in roots, and stimulating antioxidant defense systems.

2018 ◽  
Vol 64 (4) ◽  
pp. 265-275 ◽  
Author(s):  
Navid Bazghaleh ◽  
Chantal Hamel ◽  
Yantai Gan ◽  
Bunyamin Tar’an ◽  
Joan Diane Knight

Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.


Fire ◽  
2018 ◽  
Vol 1 (3) ◽  
pp. 37
Author(s):  
Alícia Barraclough ◽  
Pål Olsson

Deforestation and the use of fire to clear land have drastic effects on ecosystem functioning and compromise essential ecosystem services, especially in low-income tropical countries such as Madagascar. We evaluated the effects of local slash-and-burn practices on soil nutrients and arbuscular mycorrhizal (AM) fungi abundance in a southwestern Madagascar forest. Nine sampling plot pairs were established along the border of a reserve within the Fiherenana–Manombo (pk-32) complex, where soil and seedling root samples of the endemic tree Didierea madagascariensis were taken. We analysed soil extractable PO43−, NH4+, and NO3− as well as total soil carbon and nitrogen. We analysed AM fungal abundance in soil and roots through fatty acid marker analysis (NLFA and PLFA 16:1ω5), spore extraction, and root staining. Slash-and-burn caused an increase in pH and doubled the plant available nutrients (from 7.4 to 13.1 µg PO43− g−1 and from 6.9 to 13.2 µg NO3− g−1). Total C and total N increased in deforested soil, from 0.6% to 0.84% and from 0.06% to 0.08%, respectively. There was a significant decline in AM fungi abundance in soil, with a decrease in soil NLFA 16:1ω5 from 0.2 to 0.12 nmol/g. AM fungi abundance in D. madagascariensis roots was also negatively affected and colonization decreased from 27.7% to 16.9% and NLFA 16:1ω5 decreased from 75.7 to 19 nmol/g. Together with hyphal network disruption, increased nutrient availability caused by burning is proposed as an explanation behind AM decline in soil and roots of D. madagascariensis. This is the first study to report the effects of slash-and-burn on AM symbiosis in Madagascar’s dry forests, with likely implications for other tropical and subtropical dryland forests worldwide where slash-and-burn is practiced.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manoj-Kumar Arthikala ◽  
Kalpana Nanjareddy ◽  
Lourdes Blanco ◽  
Xóchitl Alvarado-Affantranger ◽  
Miguel Lara

AbstractTarget of rapamycin (TOR) is a conserved central growth regulator in eukaryotes that has a key role in maintaining cellular nutrient and energy status. Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts that assist the plant in increasing nutrient absorption from the rhizosphere. However, the role of legume TOR in AM fungal symbiosis development has not been investigated. In this study, we examined the function of legume TOR in the development and formation of AM fungal symbiosis. RNA-interference-mediated knockdown of TOR transcripts in common bean (Phaseolus vulgaris) hairy roots notably suppressed AM fungus-induced lateral root formation by altering the expression of root meristem regulatory genes, i.e., UPB1, RGFs, and sulfur assimilation and S-phase genes. Mycorrhized PvTOR-knockdown roots had significantly more extraradical hyphae and hyphopodia than the control (empty vector) roots. Strong promoter activity of PvTOR was observed at the site of hyphal penetration and colonization. Colonization along the root length was affected in mycorrhized PvTOR-knockdown roots and the arbuscules were stunted. Furthermore, the expression of genes induced by AM symbiosis such as SWEET1, VPY, VAMP713, and STR was repressed under mycorrhized conditions in PvTOR-knockdown roots. Based on these observations, we conclude that PvTOR is a key player in regulating arbuscule development during AM symbiosis in P. vulgaris. These results provide insight into legume TOR as a potential regulatory factor influencing the symbiotic associations of P. vulgaris and other legumes.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Christopher Ngosong ◽  
Elke Gabriel ◽  
Liliane Ruess

Biomass estimation of arbuscular mycorrhiza (AM) fungi, widespread plant root symbionts, commonly employs lipid biomarkers, predominantly the fatty acid 16:1ω5. We briefly reviewed the application of this signature fatty acid, followed by a case study comparing biochemical markers with microscopic techniques in an arable soil following a change to AM non-host plants after 27 years of continuous host crops, that is, two successive cropping seasons with wheat followed by amaranth. After switching to the non-host amaranth, spore biomass estimated by the neutral lipid fatty acid (NLFA) 16:1ω5 decreased to almost nil, whereas microscopic spore counts decreased by about 50% only. In contrast, AM hyphal biomass assessed by the phospholipid (PLFA) 16:1ω5 was greater under amaranth than wheat. The application of PLFA 16:1ω5 as biomarker was hampered by background level derived from bacteria, and further enhanced by its incorporation from degrading spores used as microbial resource. Meanwhile, biochemical and morphological assessments showed negative correlation for spores and none for hyphal biomass. In conclusion, the NLFA 16:1ω5 appears to be a feasible indicator for AM fungi of the Glomales group in the complex field soils, whereas the use of PLFA 16:1ω5 for hyphae is unsuitable and should be restricted to controlled laboratory studies.


Sign in / Sign up

Export Citation Format

Share Document