scholarly journals Performance of the RegCM4.6 for High-Resolution Climate and Extreme Simulations over Tibetan Plateau

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1104
Author(s):  
Huanghe Gu ◽  
Xiaoyan Wang

This paper presents an evaluation of the Regional Climate Model version 4.6.1 (RegCM4) at a high-resolution simulation at 10 km applied over the Tibetan Plateau. This simulation covers the period from 1980 to 2010 and is nested in a RegCM4 simulation at 30-km resolution, which is driven by the main European Centre for Medium-Range Weather and Forecasting reanalysis (ERA-Interim reanalysis) dataset. A new daily observational dataset is employed as reference data to evaluate the temperature and precipitation simulations for the inner model domain and the five largest river basins that originated in the Tibetan Plateau (TP) (i.e., the source region of Yangtze River, Yellow River, Mekong River, Salween River, and Brahmaputra River). In comparison with the low-resolution model run (R30), the cold biases for the area-averaged temperature were reduced from −2.5 to −0.1° C and the wet biases in summer mean precipitation were reduced from 58% to 25% in the high-resolution model run (R10). The substantial warming trends and slight wetting trends were basically reproduced by both RegCM4 simulations. Annual mean precipitation trends from both simulations show a better agreement with the observations than the ERA-Interim, which underestimates the annual mean precipitation trends in most regions, whereas both the RegCM4 and ERA-Interim consistently underestimate the annual mean temperature trends when compared with the observations. In addition, the overall improvement in the modeling trends for annual mean temperature and precipitation in R10 is limited when compared with R30. The extreme precipitation was also captured reasonably in both RegCM4 simulations, and the better performance is detected in the R10 simulation. The findings above show that RegCM4 with a high-resolution of 10 km is capable of reproducing the major regional climate features over the TP, but a great deal of uncertainties still exist, especially in the subregion of the Brahmaputra River basin. Thus, the 10-km resolution simulation in RegCM4 may still not be fine enough to resolve the topoclimates over the complex Himalayan terrain in the Brahmaputra River basin.

2015 ◽  
Vol 28 (10) ◽  
pp. 4185-4197 ◽  
Author(s):  
Yanhong Gao ◽  
L. Ruby Leung ◽  
Yongxin Zhang ◽  
Lan Cuo

Abstract Net precipitation [precipitation minus evapotranspiration (P − E)] changes between 1979 and 2011 from a high-resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibetan Plateau (TP) and compared to the Global Land Data Assimilation System (GLDAS) product. The high-resolution simulation better resolves precipitation changes than its coarse-resolution forcing, which contributes dominantly to the improved P − E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P − E changes. The mechanism behind the P − E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P − E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P − E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis reveals the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P − E changes in the TP.


2011 ◽  
Vol 7 (1) ◽  
pp. 11-20 ◽  
Author(s):  
A. Dobler ◽  
M. Yaoming ◽  
N. Sharma ◽  
S. Kienberger ◽  
B. Ahrens

Abstract. Projections from coarse-grid global circulation models are not suitable for regional estimates of water balance or trends of extreme precipitation and temperature, especially not in complex terrain. Thus, downscaling of global to regionally resolved projections is necessary to provide input to integrated water resources management approaches for river basins like the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB). This paper discusses the application of the regional climate model COSMO-CLM as a dynamical downscaling tool. To provide accurate data the COSMO-CLM model output was post-processed by statistical means. This downscaling chain performs well in the baseline period 1971 to 2000. However, COSMO-CLM performs better in the UDRB than in the UBRB because of a longer application experience and a less complex climate in Europe. Different climate change scenarios were downscaled for the time period 1960–2100. The projections show an increase of temperature in both basins and for all seasons. The values are generally higher in the UBRB with the highest values occurring in the region of the Tibetan Plateau. Annual precipitation shows no substantial change. However, seasonal amounts show clear trends, for instance an increasing amount of spring precipitation in the UDRB. Again, the largest trends for different precipitation statistics are projected in the region of the Tibetan Plateau. Here, the projections show up to 50% longer dry periods in the months June to September with a simultaneous increase of about 10% for the maximum amount of precipitation on five consecutive days. For the Assam region in India, the projections also show an increase of 25% in the number of consecutive dry days during the monsoon season leading to prolonged monsoon breaks.


2020 ◽  
Author(s):  
Yuanwei Wang ◽  
Lei Wang ◽  
Xiuping Li ◽  
Jing Zhou ◽  
Zhidan Hu

Abstract. As the largest river basin of the Tibetan Plateau, the Upper Brahmaputra River Basin (also called “Yarlung Zangbo” in Chinese) has profound impacts on the water security of local and downstream inhabitants. Precipitation in the basin is mainly controlled by the Indian Summer Monsoon and Westerly, and is the key to understand the water resources available in the basin; however, due to sparse observational data constrained by a harsh environment and complex topography, there remains a lack of reliable information on basin-wide precipitation (there are only nine national meteorological stations with continuous observations). To improve the accuracy of basin-wide precipitation data, we integrate various gauge, satellite and reanalysis precipitation datasets, including GLDAS, ITP-Forcing, MERRA2, TRMM and CMA datasets, to develop a new precipitation product for the 1981–2016 period over the Upper Brahmaputra River Basin, at 3-hour and 5-km resolution. The new product has been rigorously validated at different temporal scales (e.g. extreme events, daily to monthly variability, and long-term trends) and spatial scales (point- and basin-scale) with gauge precipitation observations, showing much improved accuracies compared to previous products. An improved hydrological simulation has been achieved (low relative bias: −5.94 %; highest NSE: 0.643) with the new precipitation inputs, showing reliability and potential for multi-disciplinary studies. This new precipitation product is openly accessible at https://doi.org/10.5281/zenodo.3711155 (Wang et al., 2020) and, additionally at the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn, login required).


Author(s):  
Yanhong Gao ◽  
Deliang Chen

The modeling of climate over the Tibetan Plateau (TP) started with the introduction of Global Climate Models (GCMs) in the 1950s. Since then, GCMs have been developed to simulate atmospheric dynamics and eventually the climate system. As the highest and widest international plateau, the strong orographic forcing caused by the TP and its impact on general circulation rather than regional climate was initially the focus. Later, with growing awareness of the incapability of GCMs to depict regional or local-scale atmospheric processes over the heterogeneous ground, coupled with the importance of this information for local decision-making, regional climate models (RCMs) were established in the 1970s. Dynamic and thermodynamic influences of the TP on the East and South Asia summer monsoon have since been widely investigated by model. Besides the heterogeneity in topography, impacts of land cover heterogeneity and change on regional climate were widely modeled through sensitivity experiments.In recent decades, the TP has experienced a greater warming than the global average and those for similar latitudes. GCMs project a global pattern where the wet gets wetter and the dry gets drier. The climate regime over the TP covers the extreme arid regions from the northwest to the semi-humid region in the southeast. The increased warming over the TP compared to the global average raises a number of questions. What are the regional dryness/wetness changes over the TP? What is the mechanism of the responses of regional changes to global warming? To answer these questions, several dynamical downscaling models (DDMs) using RCMs focusing on the TP have recently been conducted and high-resolution data sets generated. All DDM studies demonstrated that this process-based approach, despite its limitations, can improve understandings of the processes that lead to precipitation on the TP. Observation and global land data assimilation systems both present more wetting in the northwestern arid/semi-arid regions than the southeastern humid/semi-humid regions. The DDM was found to better capture the observed elevation dependent warming over the TP. In addition, the long-term high-resolution climate simulation was found to better capture the spatial pattern of precipitation and P-E (precipitation minus evapotranspiration) changes than the best available global reanalysis. This facilitates new and substantial findings regarding the role of dynamical, thermodynamics, and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The DDM was found to add value regarding snowfall retrieval, precipitation frequency, and orographic precipitation.Although these advantages in the DDM over the TP are evidenced, there are unavoidable facts to be aware of. Firstly, there are still many discrepancies that exist in the up-to-date models. Any uncertainty in the model’s physics or in the land information from remote sensing and the forcing could result in uncertainties in simulation results. Secondly, the question remains of what is the appropriate resolution for resolving the TP’s heterogeneity. Thirdly, it is a challenge to include human activities in the climate models, although this is deemed necessary for future earth science. All-embracing further efforts are expected to improve regional climate models over the TP.


2020 ◽  
Vol 12 (3) ◽  
pp. 1789-1803 ◽  
Author(s):  
Yuanwei Wang ◽  
Lei Wang ◽  
Xiuping Li ◽  
Jing Zhou ◽  
Zhidan Hu

Abstract. As the largest river basin of the Tibetan Plateau, the upper Brahmaputra River basin (also called “Yarlung Zangbo” in Chinese) has profound impacts on the water security of local and downstream inhabitants. Precipitation in the basin is mainly controlled by the Indian summer monsoon and westerly and is the key to understanding the water resources available in the basin; however, due to sparse observational data constrained by a harsh environment and complex topography, there remains a lack of reliable information on basin-wide precipitation (there are only nine national meteorological stations with continuous observations). To improve the accuracy of basin-wide precipitation data, we integrate various gauge, satellite, and reanalysis precipitation datasets, including GLDAS, ITP-Forcing, MERRA2, TRMM, and CMA datasets, to develop a new precipitation product for the 1981–2016 period over the upper Brahmaputra River basin, at 3 h and 5 km resolution. The new product has been rigorously validated at different temporal scales (e.g., extreme events, daily to monthly variability, and long-term trends) and spatial scales (point and basin scale) with gauge precipitation observations, showing much improved accuracies compared to previous products. An improved hydrological simulation has been achieved (low relative bias: −5.94 %; highest Nash–Sutcliffe coefficient of efficiency (NSE): 0.643) with the new precipitation inputs, showing reliability and potential for multidisciplinary studies. This new precipitation product is openly accessible at https://doi.org/10.5281/zenodo.3711155 (Wang et al., 2020) and additionally at the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn, last access: 10 July 2020, login required).


2013 ◽  
Vol 70 (4) ◽  
pp. 1278-1290 ◽  
Author(s):  
Zhenming Ji ◽  
Shichang Kang

Abstract A high-resolution regional climate model is used to simulate climate change over the Tibetan Plateau (TP). The model is driven at the grid spacing of 10 km by nesting the outputs of 50-km-resolution simulations. The results show that the models can capture the spatial and temporal distributions of the surface air temperature over the TP. The so-called double-nested method has a higher horizontal resolution and represents more spatial details. For example, the temperature simulations from the double-nested method reflect the observations better compared to the 50-km-resolution models. This is mainly due to the fact that topographical effects of complex terrains are detected better at higher resolution. Although both models can represent the basic patterns of precipitation, the simulated results are not as good as those of temperature. In the future, significant warming seems to develop over the TP under two representative concentration pathway (RCP) scenarios. Greater increases occur in December–February (DJF) compared with June–August (JJA). The increasing temperature trend is more pronounced over the Gangdese Mountains and over the Himalayas than in the central TP. The projection of precipitation shows the main increases in DJF. In JJA, it predicts decreases or slight changes in the southern TP. The comparison between RCP8.5 and RCP4.5 scenarios shows a similar spatial distributions of temperature and precipitation, whereas the respective values of RCP8.5 are enhanced compared with those under RCP4.5.


Sign in / Sign up

Export Citation Format

Share Document