scholarly journals Relationships between Low-Level Jet and Low Visibility Associated with Precipitation, Air Pollution, and Fog in Tianjin

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1197
Author(s):  
Tingting Ju ◽  
Bingui Wu ◽  
Zhaoyu Wang ◽  
Jingle Liu ◽  
Dehua Chen ◽  
...  

In this study, relationships between low-level jet (LLJ) and low visibility associated with precipitation, air pollution, and fog in Tianjin are investigated based on observational data from January to December, 2016. Statistical results show 55% of precipitation is accompanied by LLJ, and two causes responsible for the relatively high percentage are presented. The result of case analysis shows that some southwesterly LLJs are favorable for the formation of precipitation by transporting water vapor when the water vapor channel from the South China Sea or Bengal Bay to Bohai Rim region is established. Statistical results show 55% of pollution episodes (PEs) are accompanied by LLJs. When pollutions are observed in the southern industrial regions, nocturnal southwesterly LLJ, which can carry polluted air masses from polluted regions to Tianjin and induce turbulent mixing, can enhance surface PM2.5 concentration and is favorable for the formation of surface pollution at night. Nocturnal northerly or southeasterly LLJ leads to clear air masses mixing with polluted air masses and is favorable for increasing visibility. Contributions of southwesterly LLJs to the formation of fog and precipitation are similar, which both rely on establishing the water vapor channel despite occurrence heights of LLJs being different.

2019 ◽  
Vol 28 (1) ◽  
pp. 349-354 ◽  
Author(s):  
Ahmed Samy Abd El Aziz Moursi ◽  
Marwa Shouman ◽  
Ezz El-din Hemdan ◽  
Nawal El-Fishawy

2017 ◽  
Vol 51 (4) ◽  
pp. 1537-1558 ◽  
Author(s):  
James F. Danco ◽  
Elinor R. Martin

2006 ◽  
Vol 45 (5) ◽  
pp. 740-753 ◽  
Author(s):  
Lisa S. Darby ◽  
K. Jerry Allwine ◽  
Robert M. Banta

Abstract Differences in nighttime transport and diffusion of sulfur hexafluoride (SF6) tracer in an urban complex-terrain setting (Salt Lake City, Utah) are investigated using surface and Doppler lidar wind data and large-scale surface pressure differences. Interacting scales of motion, as studied through the URBAN 2000 field program combined with the Vertical Transport and Mixing (VTMX) experiment, explained the differences in the tracer behavior during three separate intensive operating periods. With an emphasis on nighttime stable boundary layer conditions, these field programs were designed to study flow features responsible for the nighttime transport of airborne substances. This transport has implications for air quality, homeland security, and emergency response if the airborne substances are hazardous. The important flow features investigated included thermally forced canyon and slope flows and a low-level jet (LLJ) that dominated the basin-scale winds when the surface pressure gradient was weak. The presence of thermally forced flows contributed to the complexity and hindered the predictability of the tracer motion within and beyond the city. When organized thermally forced flows were present, the tracer tended to stay closer to the city for longer periods of time, even though a strong basin-scale LLJ did develop. When thermally forced flows were short lived or absent, the basin-scale low-level jet dominated the wind field and enhanced the transport of tracer material out of the city.


Sign in / Sign up

Export Citation Format

Share Document