Role of the eastern Pacific-Caribbean Sea SST gradient in the Choco low-level jet variations from 1900–2015

2021 ◽  
Author(s):  
WL Cerón ◽  
RV Andreoli ◽  
MT Kayano ◽  
A Avila-Diaz
Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1120
Author(s):  
Wilmar L. Cerón ◽  
Mary T. Kayano ◽  
Rita V. Andreoli ◽  
Alvaro Avila-Diaz ◽  
Itamara Parente de Souza ◽  
...  

This study analyzes the variability of the Choco jet (CJ) and Caribbean low-level jet (CLLJ) with consideration of the simultaneous Pacific interdecadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) low-frequency mean states and their effects on the atmospheric circulation and rainfall in northwestern South America and Central America for the 1900–2015 period, during the seasons with the highest intensities of the CJ (September–November (SON)) and the CLLJ (June–August). Variations in the sea surface temperature (SST) anomaly positioning in the eastern Pacific, tropical North Atlantic (TNA)/Caribbean Sea during different mean states restrict the anomalous circulation, and, consequently, the intensity of the CJ and CLLJ. During the warm AMO (WAMO)/cold PDO (CPDO), the SST gradient from the tropical Pacific into the TNA, accompanied by a cyclonic circulation near the east coast of the Americas, intensifies the west–east circulation in the region, strengthening the CJ and weakening the CLLJ during SON such that rainfall increases over Colombia, Central America and in adjacent oceans. During the cold AMO (CAMO)/warm PDO (WPDO) phase, a relative east/west SST gradient occurs in TNA, consistent with a cyclonic circulation in western TNA, establishing an anomalous southwest–northwestward circulation from the eastern Pacific into the Caribbean basin, forming a well-configured CJ, increasing precipitation over Central America and its adjacent oceans. For the CLLJ, during CAMO phases, the anticyclonic circulations extended over most of the TNA favor its intensification from 30° W to the Caribbean Sea. In contrast, during WAMO, the cyclonic circulation near the east coast of the United States restricts its intensification to the Caribbean Sea region. To the best of our knowledge, the results presented here are new and might be useful in atmospheric modeling and extreme event studies.


2017 ◽  
Vol 38 ◽  
pp. e569-e576 ◽  
Author(s):  
Anu Xavier ◽  
Ajil Kottayil ◽  
K. Mohanakumar ◽  
Prince K. Xavier

2017 ◽  
Vol 122 (11) ◽  
pp. 5903-5916 ◽  
Author(s):  
Tito Maldonado ◽  
Anna Rutgersson ◽  
Rodrigo Caballero ◽  
Francesco S. R. Pausata ◽  
Eric Alfaro ◽  
...  

2014 ◽  
Vol 71 (4) ◽  
pp. 1443-1459 ◽  
Author(s):  
Sebastian Schemm ◽  
Heini Wernli

Abstract This study continues the investigation of airstreams in idealized moist baroclinic waves and addresses the formation of the cold conveyor belt (CCB), its linkage to the warm conveyor belt (WCB), and their impact on the development of a midlatitude cyclone. The CCB is identified as a coherent bundle of trajectories, characterized by weak ascent and a strong increase of potential vorticity (PV) along the flow, in contrast to the WCB, defined as the trajectories with maximum ascent. The authors illuminate the role of the two conveyor belts in the formation of two strong PV anomalies that form in the upper (WCB, negative PV anomaly) and lower troposphere (CCB, positive PV anomaly), respectively, and thereby establish a link between these airstreams and relevant aspects of the dynamics of extratropical cyclones. The CCB moves close to the surface along the colder side of the bent-back front and experiences a PV increase as it passes below a region of maximum latent heat release at midtropospheric levels. Accordingly, it arrives with high PV values at the tail of the bent-back front where the most intense low-level winds occur. The WCB, which rises above the bent-back front, causes the formation of the midtropospheric heating rate maximum and thereby not only influences the upper-level downstream development, but also drives the increase of PV along the CCB and, in consequence, indirectly drives the formation of the low-level jet at the tail of the bent-back front.


2016 ◽  
Vol 60 (10) ◽  
pp. 1531-1542 ◽  
Author(s):  
Charlotte E. Wainwright ◽  
Phillip M. Stepanian ◽  
Kyle G. Horton

Sign in / Sign up

Export Citation Format

Share Document