scholarly journals Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1349
Author(s):  
Mikhail Varentsov ◽  
Timofey Samsonov ◽  
Matthias Demuzere

Urban canopy parameters (UCPs) are essential in order to accurately model the complex interplay between urban areas and their environment. This study compares three different approaches to define the UCPs for Moscow (Russia), using the COSMO numerical weather prediction and climate model coupled to TERRA_URB urban parameterization. In addition to the default urban description based on the global datasets and hard-coded constants (1), we present a protocol to define the required UCPs based on Local Climate Zones (LCZs) (2) and further compare it with a reference UCP dataset, assembled from OpenStreetMap data, recent global land cover data and other satellite imagery (3). The test simulations are conducted for contrasting summer and winter conditions and are evaluated against a dense network of in-situ observations. For the summer period, advanced approaches (2) and (3) show almost similar performance and provide noticeable improvements with respect to default urban description (1). Additional improvements are obtained when using spatially varying urban thermal parameters instead of the hard-coded constants. The LCZ-based approach worsens model performance for winter however, due to the underestimation of the anthropogenic heat flux (AHF). These results confirm the potential of LCZs in providing internationally consistent urban data for weather and climate modelling applications, as well as supplementing more comprehensive approaches. Yet our results also underline the continued need to improve the description of built-up and impervious areas and the AHF in urban parameterizations.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 237 ◽  
Author(s):  
Valeria Garbero ◽  
Massimo Milelli ◽  
Edoardo Bucchignani ◽  
Paola Mercogliano ◽  
Mikhail Varentsov ◽  
...  

The increase in built surfaces constitutes the main reason for the formation of the Urban Heat Island (UHI), that is a metropolitan area significantly warmer than its surrounding rural areas. The urban heat islands and other urban-induced climate feedbacks may amplify heat stress and urban flooding under climate change and therefore to predict them correctly has become essential. Currently in the COSMO model, cities are represented by natural land surfaces with an increased surface roughness length and a reduced vegetation cover, but this approach is unable to correctly reproduce the UHI effect. By increasing the model resolution, a representation of the main physical processes that characterize the urban local meteorology should be addressed, in order to better forecast temperature, moisture and precipitation in urban environments. Within the COSMO Consortium a bulk parameterization scheme (TERRA_URB or TU) has been developed. It parametrizes the effects of buildings, streets and other man-made impervious surfaces on energy, moist and momentum exchanges between the surface and atmosphere, and additionally accounts for the anthropogenic heat flux as a heat source from the surface to the atmosphere. TU implements an impervious water-storage parameterization, and the Semi-empirical Urban canopy parametrization (SURY) that translates 3D urban canopy into bulk parameters. This paper presents evaluation results of the TU scheme in high-resolution simulations with a recent COSMO model version for selected European cities, namely Turin, Naples and Moscow. The key conclusion of the work is that the TU scheme in the COSMO model reasonably reproduces UHI effect and improves air temperature forecasts for all the investigated urban areas, despite each city has very different morphological characteristics. Our results highlight potential benefits of a new turbulence scheme and the representation of skin-layer temperature (for vegetation) in the model performance. Our model framework provides perspectives for enhancing urban climate modelling, although further investigations in improving model parametrizations, calibration and the use of more realistic urban canopy parameters are needed.


2021 ◽  
Author(s):  
Valeria Garbero ◽  
Massimo Milelli ◽  
Francesca Bassani ◽  
Edoardo Bucchignani ◽  
Paola Mercogliano ◽  
...  

<p>Nowadays, cities are the preferred location for more than half of the human population and the places where major human-perceived climate change impacts occur. In an increasingly urbanized world, it is essential to represent such areas adequately in Numerical Weather Prediction (NWP) models, not only to correctly forecast air temperature, but also the human heat stress and the micro-climate phenomena induced by the cities. Among them, the best known is the Urban Heat Island (UHI) effect, which refers to the significantly higher temperatures experienced by a metropolitan area than its rural surroundings. Currently, the COSMO model employs a zero-order urban description, which is unable to correctly reproduce the UHI effect: cities are simply represented as natural lands with increased surface roughness length and reduced vegetation cover. However, the reproduction of the urban climate features in NWP and regional climate models is possible with the use of the so-called urban canopy models, that are able to parameterize the interaction between the urbanized surface and the overlying atmosphere. In this context, a new bulk parameterization scheme, TERRA_URB (TU), has been developed within the COSMO Consortium. TU offers an intrinsic representation of urban physics: the effect of buildings, streets and other man-made layers on the surface-atmosphere interaction is described by parameterizing the impervious water balance, translating the 3D urban-canopy parameters into bulk parameters with the Semi-empirical Urban canopy parameterization (SURY) and using the externally calculated anthropogenic heat flux as additional heat source. In this work, we present high-resolution simulations with the TU scheme, for different European cities, Turin, Naples and Moscow. An in-depth evaluation and verification of the performances of the recent COSMO version with TU scheme and new implemented physical parameterizations, such the ICON-like surface-layer turbulence scheme and the new formulation of the surface temperature, have been carried out. The validation concerned the 2-meter temperature and was performed for 1- or 2-week selected periods over the 3 European cities characterized by different environment and climate, namely the Moscow megacity in Russia and Turin and Naples in Italy. Even if the three domains are morphologically different, the results follow a common behavior. In particular, the activation of TERRA_URB provides a substantial improvement in capturing the UHI intensity and improving air temperature forecasts in urban areas. Potential benefits in the model performance also arise from a new turbulence scheme and the representation of skin-layer temperature (for vegetation). Our model framework provides promising perspectives for enhancing urban climate modelling, although further investigations are needed.</p>


2020 ◽  
Author(s):  
Oscar Brousse ◽  
Jonas Van de Walle ◽  
Lien Arnalsteen ◽  
Matthias Demuzere ◽  
Wim Thiery ◽  
...  

<p>Local Climate Zones (LCZ) have now been widely accepted and used by the urban climate community (Ching et al., 2018). However, their use over Sub-Saharan Africa has still been limited because of data scarcity in the region. Brousse et al. (2019, 2020) demonstrated the added value of applying spatially variant urban canyon parameters derived from LCZ in the urban climate model TERRA_URB – embedded in the COSMO-CLM model. Despite its promising results, thermal and morphological parameters extracted out of the ranges proposed by Stewart and Oke (2012) are mostly derived from Western cities. Hence, uncertainties related to the use of unascertained urban forms and functions of African cities for urban climate modelling have not yet been evaluated.</p><p>To quantify the sensitivity of the model to more representative urban canopy parameters of African cities, this study sets up a methodology for: (i) obtaining from in situ measurements archetypal parameters of LCZ classes for Kampala (Uganda); and (ii) simulating the potential effect of the newly defined urban structure on the local climate.</p><p>In situ data were obtained during field work held in the summer months of 2018. A representative sample of 1300 measurement points was selected throughout the city of Kampala, for which both quantitative (road width, distance between houses, heights of buildings) and qualitatively estimated (vegetation fraction, road-wall-roof material) variables were collected.  These variables enabled the development of an updated LCZ map of the city of Kampala.</p><p>To evaluate the model’s sensitivity to the new spatially explicit urban morphological and thermal parameters, this new information was fed into the TERRA_URB scheme at a horizontal resolution of 1 km for a 3-months period (December 2017 – February 2018). The run was nested within a 12 km simulation forced by ERA-Interim reanalysis data. Results show tangible effects of the updated parameters on the 2-meter air temperature, land surface temperature and surface energy balance components. Still, no major improvements in model skill compared to the default LCZ framework proposed by Brousse et al. (2020) were found. [1] [WT2] This study is among the first studies to test the sensitivity of an urban climate model to more realistic urban parameters in Africa and aims at triggering more research to be done in the area with a variety of urban climate models.</p>


2019 ◽  
Vol 11 (9) ◽  
pp. 1132 ◽  
Author(s):  
Shasha Wang ◽  
Deyong Hu ◽  
Shanshan Chen ◽  
Chen Yu

Anthropogenic heat (AH) generated by human activities has a major impact on urban and regional climate. Accurately estimating anthropogenic heat is of great significance for studies on urban thermal environment and climate change. In this study, a gridded anthropogenic heat flux (AHF) estimation scheme was constructed based on socio-economic data, energy-consumption data, and multi-source remote sensing data using a partition modeling method, which takes into account the regional characteristics of AH emission caused by the differences in regional development levels. The refined AHF mapping in China was realized with a high resolution of 500 m. The results show that the spatial distribution of AHF has obvious regional characteristics in China. Compared with the AHF in provinces, the AHF in Shanghai is the highest which reaches 12.56 W·m−2, followed by Tianjin, Beijing, and Jiangsu. The AHF values are 5.92 W·m−2, 3.35 W·m−2, and 3.10 W·m−2, respectively. As can be seen from the mapping results of refined AHF, the high-value AHF aggregation areas are mainly distributed in north China, east China, and south China. The high-value AHF in urban areas is concentrated in 50–200 W·m−2, and maximum AHF in Shenzhen urban center reaches 267 W·m−2. Further, compared with other high resolution AHF products, it can be found that the AHF results in this study have higher spatial heterogeneity, which can better characterize the emission characteristics of AHF in the region. The spatial pattern of the AHF estimation results correspond to the distribution of building density, population, and industry zone. The high-value AHF areas are mainly distributed in airports, railway stations, industry areas, and commercial centers. It can thus be seen that the AHF estimation models constructed by the partition modeling method can well realize the estimation of large-scale AHF and the results can effectively express the detailed spatial distribution of AHF in local areas. These results can provide technical ideas and data support for studies on surface energy balance and urban climate change.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alvin Christopher Galang Varquez ◽  
Shota Kiyomoto ◽  
Do Ngoc Khanh ◽  
Manabu Kanda

AbstractNumerical weather prediction models are progressively used to downscale future climate in cities at increasing spatial resolutions. Boundary conditions representing rapidly growing urban areas are imperative to more plausible future predictions. In this work, 1-km global anthropogenic heat emission (AHE) datasets of the present and future are constructed. To improve present AHE maps, 30 arc-second VIIRS satellite imagery outputs such as nighttime lights and night-fires were incorporated along with the LandScanTM population dataset. A futuristic scenario of AHE was also developed while considering pathways of radiative forcing (i.e. representative concentration pathways), pathways of social conditions (i.e. shared socio-economic pathways), a 1-km future urbanization probability map, and a model to estimate changes in population distribution. The new dataset highlights two distinct features; (1) a more spatially-heterogeneous representation of AHE is captured compared with other recent datasets, and (2) consideration of future urban sprawls and climate change in futuristic AHE maps. Significant increases in projected AHE for multiple cities under a worst-case scenario strengthen the need for further assessment of futuristic AHE.


Climate ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 70 ◽  
Author(s):  
Artur Gonçalves ◽  
Gabriella Ornellas ◽  
António Castro Ribeiro ◽  
Filipe Maia ◽  
Alfredo Rocha ◽  
...  

The thermal environment is an important aspect of the urban environment because it affects the quality of life of urban residents and the energy use in buildings. Urban Heat Island (UHI) and Urban Cold Island (UCI) are complementary effects that are the consequence of cities’ structures interference with the local climate. This article presents results from five years of urban climate monitoring (2012–2016) in a small Portuguese city (Bragança) using a dense meteorological network of 23 locations covering a wide array of Local Climate Zones (LCZ), from urban areas to nearby rural areas. Results show the presence of both the UHI effect, from mid-afternoon until sunrise, and the UCI after sunrise, both being more intense under the dense midrise urban context and during the summer. Urban Green Spaces had an impact on both UHI and UCI, with an important role in cooling areas of the city during daytime in the summer. Other LCZs had less impact on local thermal conditions. Despite the small size of this city, both effects (UHI and UCI) had a relevant intensity with an impact on local climate conditions. Both effects tend to decrease in intensity with increasing wind speed and precipitation.


2021 ◽  
Author(s):  
Ge Cheng ◽  
David Grawe ◽  
K. Heinke Schlünzen

<p>Nudging is a simple method that aims to dynamically adjust the model toward the observations by including an additional feedback term in the model governing equation. This method is widely applied in data assimilation due to its simple implementation and reasonable model results. The basic concept of nudging is similar to that of urban canopy parameterization, in which additional terms are usually added in the conservation equations of momentum and energy aiming to simulate the canopy effects. However, few studies have investigated the implementation of nudging methods in urban canopy parameterizations. In this study we developed a multi-layer urban canopy parameterization (UCP) by using a nudging approach to represent the impacts of vegetated urban canopies on temperatures and winds in mesoscale models.</p><p>The difficulty of developing UCP by using a nudging method lies in defining appropriate values for the nudging coefficients and the forcing fields (e.g. indoor temperature fields for temperature nudging). To determine nudging coefficients, we use three major urban canopy morphological parameters: building height, frontal area density and building density. The ranges of these parameters are taken from the values for the Local Climate Zones datasets, in our case for the city of Hamburg. The UCP is employed in the three -dimensional atmospheric mesoscale model METRAS. Results show that this UCP can well simulate wind-blocking effects induced from obstacles as buildings and trees and urban heat island phenomenon for cities. Thus, nudging is an efficient and effective method that can be used for urban canopy parameterizations. However, as well known for nudging, it is not conserving energy. Therefore, we investigated the energy loss by tracking the reduced kinetic energy and internal energy. The UCP and model results will be presented.</p>


2016 ◽  
Vol 24 (3) ◽  
pp. 2-12 ◽  
Author(s):  
Jan Geletič ◽  
Michal Lehnert

Abstract Stewart and Oke (2012) recently proposed the concept of Local Climate Zones (LCZ) to describe the siting of urban meteorological stations and to improve the presentation of results amongst researchers. There is now a concerted effort, however, within the field of urban climate studies to map the LCZs across entire cities, providing a means to compare the internal structure of urban areas in a standardised way and to enable the comparison of cities. We designed a new GIS-based LCZ mapping method for Central European cities and compiled LCZ maps for three selected medium-sized Central European cities: Brno, Hradec Králové, and Olomouc (Czech Republic). The method is based on measurable physical properties and a clearly defined decision-making algorithm. Our analysis shows that the decision-making algorithm for defining the percentage coverage for individual LCZs showed good agreement (in 79–89% of cases) with areas defined on the basis of expert knowledge. When the distribution of LCZs on the basis of our method and the method of Bechtel and Daneke (2012) was compared, the results were broadly similar; however, considerable differences occurred for LCZs 3, 5, 10, D, and E. It seems that Central European cities show a typical spatial pattern of LCZ distribution but that rural settlements in the region also regularly form areas of built-type LCZ classes. The delineation and description of the spatial distribution of LCZs is an important step towards the study of urban climates in a regional setting.


2021 ◽  
Author(s):  
Oscar Brousse ◽  
Jonas Van de Walle ◽  
Matthias Demuzere ◽  
Alberto Martilli ◽  
Nicole van Lipzig ◽  
...  

<p>In order to build resilient cities in face of climate change in Sub-Saharan Africa, much is to be done to understand the impact of rapid and uncontrolled urbanization on the local climate in the region. Recent efforts by Brousse et al. (2019, 2020) demonstrated that using generic urban parameter information  derived out of Local Climate Zones (LCZ ; Stewart and Oke, 2012) maps created through the World Urban Database and Access Portal Tool framework (Ching et al. 2018) may be used to model the impact of Sub-Saharan African cities on their local climate – using the case of Kampala, the capital city of Uganda. These studies showed that despite the characteristic data scarcity on urban typologies that is present in Sub-Saharan Africa, LCZ could be used as a solution for modelling and studying the urban climates in the region.</p><p>Yet these conclusions were only obtained through the use of the bulk-level urban canopy model TERRA_URB, embedded in the COSMO-CLM regional climate model. We therefore test the applicability of a more complex urban canopy models – the Building Effect Parameterization coupled to the Building Energy Model (BEP-BEM) – over the region. To do so, we focus on short periods with specific meteorological conditions during the dry season spanning from December 2017 to February 2018. These are obtained through a k-means clustering over hourly weather measurements given by the automatic weather station located at the Makerere University, in the city-center of Kampala. Wind direction and speed, 2-meter air temperature, incoming short-wave radiation, precipitation, daily temperature range, 2-meter air relative humidity and near-surface pressure are used to depict 5 weather typologies (ie. clusters) during the dry season. We chose to keep only periods with 5 consecutive days of one weather typology, which results in three 5-day periods of distinct typology. We then run the model for these periods and evaluate its outputs against the state-of-the-art simulation by Brousse et al. (2020) as well as in-situ and satellite observations for certain meteorological variables. After that, we show the effect of the recent urbanization on the local climate for each of those three periods and relate it to the variability in urban heat.</p><p>This study is the first to model a tropical African city at 1 km horizontal resolution using the BEP-BEM model embedded in WRF. The latter could have major implications as more complex urban canopy models coupled to building energy models could shed light on the impact of the built environment on the livability of indoor and outdoor environments in these cities. Furthermore, insights could indeed be gained on the contribution of air conditioning heat fluxes to outdoor temperatures and the energetic consumption needed to keep indoor environments at an optimal temperature. Additionally, by resolving the urban environment in three dimensions, BEP-BEM could help increase our understanding of how specific urban planning and architectural adaptation strategies (like green or cool roofs, roof top solar panel, new building materials, urban greening etc.) may increase the citizens’ thermal comfort and reduce negative health impacts under specific weather conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document