scholarly journals Source Apportionment and Toxicity of PM in Urban, Sub-Urban, and Rural Air Quality Network Stations in Catalonia

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 744
Author(s):  
Clara Jaén ◽  
Paula Villasclaras ◽  
Pilar Fernández ◽  
Joan O. Grimalt ◽  
Mireia Udina ◽  
...  

Air quality indicators, i.e., PM10, NO2, O3, benzo[a]pyrene, and several organic tracer compounds were evaluated in an urban traffic station, a sub-urban background station, and a rural background station of the air quality network in Catalonia (Spain) from summer to winter 2019. The main sources that contribute to the organic aerosol and PM toxicity were determined. Traffic-related air pollution dominated the air quality in the urban traffic station, while biomass burning in winter and secondary organic aerosol (SOA) in summer impact the air quality in the sub-urban and rural background stations. Health risk assessment for chronic exposure over the past decade, using WHO air quality standards, showed that NO2, PM10 and benzo[a]pyrene from traffic emissions pose an unacceptable risk to the human population in the urban traffic station. PM10 and benzo[a]pyrene from biomass burning were unacceptably high in the sub-urban and rural background stations. Toxicity tests of the PM extracts with epithelial lung cells showed higher toxicity in wintertime samples in the sub-urban and rural stations, compared to the urban traffic station. These results require different mitigation strategies for urban and rural sites in order to improve the air quality. In urban areas, traffic emissions are still dominating the air quality, despite improvements in the last years, and may directly be responsible for part of the SOA and O3 levels in sub-urban and rural areas. In these later areas, air pollution from local biomass burning emissions are dominating the air quality, essentially in the colder period of the year.

2014 ◽  
Vol 14 (14) ◽  
pp. 20845-20882 ◽  
Author(s):  
D. E. Young ◽  
J. D. Allan ◽  
P. I. Williams ◽  
D. C. Green ◽  
R. M. Harrison ◽  
...  

Abstract. Solid fuel emissions, including those from biomass burning, are increasing in urban areas across the European Union due to rising energy costs and government incentives to use renewable energy sources for heating. In order to help protect human health as well as to improve air quality and pollution abatement strategies, the sources of combustion aerosols, their contributions, and the processes they undergo need to be better understood. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was therefore deployed at an urban background site between January and February 2012 to investigate solid fuel organic aerosols (SFOA) in London. The variability of SFOA was examined and the factors governing the split between the two SFOA factors derived from positive matrix factorisation (PMF) were assessed. The concentrations of both factors were found to increase during the night and during cold periods, consistent with domestic space heating activities. The split between the two factors is likely governed predominantly by differences in burn conditions where SFOA1 best represents more efficient burns in the south and SFOA2 best represents less efficient burns in the east and west. The differences in efficiency may be due to burner types or burn phase, for example. Different fuel types and levels of atmospheric processing also likely contribute to the two factors. As the mass spectral profile of SFOA is highly variable, the findings from this study have implications for improving future source apportionment and factorisation analyses. During the winter, SFOA was found to contribute 38% to the total submicron organic aerosol (OA) mass, with SFOA2 contributing slightly more than SFOA1 (20% compared to 18%). A similar contribution of SFOA was derived for the same period from compact time-of-flight AMS (cToF-AMS), which measured for a full calendar year at the same site. The seasonality of SFOA was investigated using the year-long data set where concentrations were greatest in the autumn and winter. During the summer, SFOA contributed 11% to the organic fraction, where emissions resulted from different anthropogenic activities such as barbecues and domestic garden wood burning. The significant contribution of SFOA to total organic mass throughout the year suggests that the negative effects on health and air quality, as well as climate, are not just confined to winter as exposure to these aerosols and the associated black carbon can also occur during the summer, which may have significant implications for air-quality policies and mitigation strategies.


2018 ◽  
Vol 1 (1) ◽  
pp. 1 ◽  
Author(s):  
Manal Inchaouh ◽  
Kenza Khomsi ◽  
Pr. Mohamed Tahiri

<p><em>Air Pollution is a serious hazard worldwide especially in urban areas. Road traffic is the main cause of pollution in agglomerations that are confronted to an excess of pollutants due to traffic intensity and the dominance of diesel cars. This paper presents the assessment of road traffic pollution in the Grand Casablanca</em><em> </em><em>area. Data used are the result of simultaneous measurements at thirteen sites located in the Grand Casablanca. Available data cover 4 years period (2013</em><em>-</em><em>2016). Traffic-related air pollutants are reviewed in order to assess their impact on the local air quality. It include nitrogen dioxide (NO<sub>2</sub>), particulate matter (PM<sub>10</sub>), carbon monoxide (CO) and Benzene (C<sub>6</sub>H<sub>6</sub>). Annual evolutions are presented and compared to national air quality standards;</em><em> </em><em>NO<sub>2</sub> annual trends are also evaluated. The [NO]/[NO<sub>2</sub>] emissions ratio calculation allows then to characterize the measurement sites against road traffic. The paper focuses on determining the contribution of road traffic emissions on air quality modifying; we found spatial variability in traffic</em><em> </em><em>pollutants. The results pointed out that road traffic and conditions are the main causes of air pollution in the area and the analysis provide a quick view of the relatively critical areas that need more action to reduce this pollution.</em></p>


2015 ◽  
Vol 15 (5) ◽  
pp. 2429-2443 ◽  
Author(s):  
D. E. Young ◽  
J. D. Allan ◽  
P. I. Williams ◽  
D. C. Green ◽  
R. M. Harrison ◽  
...  

Abstract. Solid fuel emissions, including those from biomass burning, are increasing in urban areas across the European Union due to rising energy costs and government incentives to use renewable energy sources for heating. In order to help protect human health as well as to improve air quality and pollution abatement strategies, the sources of combustion aerosols, their contributions, and the processes they undergo need to be better understood. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was therefore deployed at an urban background site between January and February 2012 to investigate solid fuel organic aerosols (SFOA) in London. The variability of SFOA was examined and the factors governing the split between the two SFOA factors derived from Positive Matrix Factorisation (PMF) were assessed. The concentrations of both factors were found to increase during the night and during cold periods, consistent with domestic space heating activities. The split between the two factors is likely governed predominantly by differences in burn conditions where SFOA1 best represents more efficient burns and SFOA2 best represents less efficient burns. The differences in efficiency may be due to burner types or burn phase, for example. Different fuel types and levels of atmospheric processing also likely contribute to the two factors. As the mass spectral profile of SFOA is highly variable, the findings from this study may have implications for improving future source apportionment and factorisation analyses. During the winter, SFOA was found to contribute 38% to the total non-refractory submicron organic aerosol (OA) mass, with similar contributions from both SFOA factors (20% from SFOA1 and 18% from SFOA2). A similar contribution of SFOA was derived for the same period from a compact time-of-flight AMS (cToF-AMS), which measured for a full calendar year at the same site. The seasonality of SFOA was investigated using the year-long data set where concentrations were greatest in the autumn and winter. During the summer, SFOA contributed 11% to the organic fraction, where emissions resulted from different anthropogenic activities such as barbecues and domestic garden wood burning. The significant contribution of SFOA to total organic mass throughout the year suggests that the negative effects on health and air quality, as well as climate, are not just confined to winter as exposure to these aerosols and the associated black carbon can also occur during the summer, which may have significant implications for air-quality policies and mitigation strategies.


2020 ◽  
Author(s):  
Angel Vela ◽  
Debora Alvim ◽  
Eder Vendrasco ◽  
Dirceu Herdies ◽  
Nilo Figueroa ◽  
...  

&lt;p&gt;Biomass burning episodes are quite common in the central region of South America and represent the dominant aerosol sources during the dry/burning, between August and October. Large amounts of trace gases and aerosols injected into the atmosphere from these fire events can then be efficiently transported to urban areas in southeastern South America, thus affecting air quality over those areas. Observational data have been of fundamental importance to understand the evolution and interaction of biomass burning products with meteorology and chemistry. However, supplementing this information with the use of a comprehensive air quality modeling system in order to anticipate very acute air pollution episodes, and thus avoiding severe impacts on human health, is also required. Considering this, a new regional air pollution modeling framework for South America is being implemented by the Center for Weather Forecasting and Climate Studies (CPTEC), the National Weather Service of Brazil. This new system, based on the Weather Research and Forecasting with Chemistry model (WRF-Chem; Grell et al., 2005), is being run experimentally and its operational implementation is underway. The forecasts were driven by global forecast data from the GFS-FV3 model for meteorology and from the WACCM model for chemistry, both data sets provided every 6 hours. WACCM forecasts are employed to map gas and aerosol background concentrations to the WRF-Chem initial and boundary conditions, according to the MOZCART chemical mechanism. Two experiments of 48-hour real-time forecast simulations were performed, on a daily basis, during August and September of 2018 and 2019. The experiment for 2019 includes the very strong 3-week forest fire event when the Metropolitan Area of S&amp;#227;o Paulo, the largest metropolitan area in South America, plunged into darkness on August 19, with day turning into night. Model results are in good domain-wide agreement with satellite data and also with in situ measurements.&amp;#160;Besides forecasts of meteorological parameters, this new system provides forecasts of regional distributions of primary chemical species (CO, SO2, NOx, particulate matter including black carbon), of secondary species (ozone, secondary organic aerosols) and air pollution related health indices, all parameters with a resolution of 20 km and for the next 72 hours.&lt;/p&gt;


2017 ◽  
Vol 68 (4) ◽  
pp. 841-846
Author(s):  
Hai-Ying Liu ◽  
Daniel Dunea ◽  
Mihaela Oprea ◽  
Tom Savu ◽  
Stefania Iordache

This paper presents the approach used to develop the information chain required to reach the objectives of the EEA Grants� RokidAIR project in two Romanian cities i.e., Targoviste and Ploiesti. It describes the PM2.5 monitoring infrastructure and architecture to the web-based GIS platform, the early warning system and the decision support system, and finally, the linking of air pollution to health effects in children. In addition, it shows the analysis performance of the designed system to process the collected time series from various data sources using the benzene concentrations monitored in Ploiesti. Moreover, this paper suggests that biomarkers, mobile technologies, and Citizens� Observatories are potential perspectives to improve data coverage by the provision of near-real-time air quality maps, and provide personal exposure and health assessment results, enabling the citizens� engagement and behavioural change. This paper also addresses new fields in nature-based solutions to improve air quality, and studies on air pollution and its mental health effects in the urban areas of Romania.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 236
Author(s):  
Ha Na You ◽  
Myeong Ja Kwak ◽  
Sun Mi Je ◽  
Jong Kyu Lee ◽  
Yea Ji Lim ◽  
...  

Environmental pollution is an important issue in metropolitan areas, and roadside trees are directly affected by various sources of pollution to which they exhibit numerous responses. The aim of the present study was to identify morpho-physio-biochemical attributes of maidenhair tree (Ginkgo biloba L.) and American sycamore (Platanus occidentalis L.) growing under two different air quality conditions (roadside with high air pollution, RH and roadside with low air pollution, RL) and to assess the possibility of using their physiological and biochemical parameters as biomonitoring tools in urban areas. The results showed that the photosynthetic rate, photosynthetic nitrogen-use efficiencies, and photochromic contents were generally low in RH in both G. biloba and P. occidentalis. However, water-use efficiency and leaf temperature showed high values in RH trees. Among biochemical parameters, in G. biloba, the lipid peroxide content was higher in RH than in RL trees, but in P. occidentalis, this content was lower in RH than in RL trees. In both species, physiological activities were low in trees planted in areas with high levels of air pollution, whereas their biochemical and morphological variables showed different responses to air pollution. Thus, we concluded that it is possible to determine species-specific physiological variables affected by regional differences of air pollution in urban areas, and these findings may be helpful for monitoring air quality and environmental health using trees.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 264 ◽  
Author(s):  
Giovanni Lonati ◽  
Federico Riva

The impact of the reduced atmospheric emissions due to the COVID-19 lockdown on ambient air quality in the Po Valley of Northern Italy was assessed for gaseous pollutants (NO2, benzene, ammonia) based on data collected at the monitoring stations distributed all over the area. Concentration data for each month of the first semester of 2020 were compared with those of the previous six years, on monthly, daily, and hourly bases, so that pre, during, and post-lockdown conditions of air quality could be separately analyzed. The results show that, as in many other areas worldwide, the Po Valley experienced better air quality during 2020 spring months for NO2 and benzene. In agreement with the reductions of nitrogen oxides and benzene emissions from road traffic, estimated to be −35% compared to the regional average, the monthly mean concentration levels for 2020 showed reductions in the −40% to −35% range compared with the previous years, but with higher reductions, close to −50%, at high-volume-traffic sites in urban areas. Conversely, NH3 ambient concentration levels, almost entirely due the emissions of the agricultural sector, did not show any relevant change, even at high-volume-traffic sites in urban areas. These results point out the important role of traffic emissions in NO2 and benzene ambient levels in the Po Valley, and confirm that this region is a rather homogeneous air basin with urban area hot-spots, the contributions of which add up to a relatively high regional background concentration level. Additionally, the relatively slow response of the air quality levels to the sudden decrease of the emissions due to the lockdown shows that this region is characterized by a weak exchange of the air masses that favors both the build-up of atmospheric pollutants and the development of secondary formation processes. Thus, air quality control strategies should aim for structural interventions intended to reduce traffic emissions at the regional scale and not only in the largest urban areas.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 431
Author(s):  
Ayako Yoshino ◽  
Akinori Takami ◽  
Keiichiro Hara ◽  
Chiharu Nishita-Hara ◽  
Masahiko Hayashi ◽  
...  

Transboundary air pollution (TAP) and local air pollution (LAP) influence the air quality of urban areas. Fukuoka, located on the west side of Japan and affected by TAP from the Asian continent, is a unique example for understanding the contribution of LAP and TAP. Gaseous species and particulate matter (PM) were measured for approximately three weeks in Fukuoka in the winter of 2018. We classified two distinctive periods, LAP and TAP, based on wind speed. The classification was supported by variations in the concentration of gaseous species and by backward trajectories. Most air pollutants, including NOx and PM, were high in the LAP period and low in the TAP period. However, ozone was the exception. Therefore, our findings suggest that reducing local emissions is necessary. Ozone was higher in the TAP period, and the variation in ozone concentration was relatively small, indicating that ozone was produced outside of the city and transported to Fukuoka. Thus, air pollutants must also be reduced at a regional scale, including in China.


2021 ◽  
Author(s):  
Spiro Jorga ◽  
Kalliopi Florou ◽  
Christos Kaltsonoudis ◽  
John Kodros ◽  
Christina Vasilakopoulou ◽  
...  

&lt;p&gt;Biomass burning including residential heating, agricultural fires, prescribed burning, and wildfires is a major source of gaseous and particulate pollutants in the atmosphere. Although, important changes in the size distributions and the chemical composition of the biomass burning aerosol during daytime chemistry have been observed, the corresponding changes at nighttime or in winter where photochemistry is slow, have received relatively little attention. In this study, we tested the hypothesis that nightime chemistry in biomass burning plumes can be rapid in urban areas using a dual smog chamber system.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Ambient urban air during winter nighttime periods with high concentrations of ambient biomass burning organic aerosol is used as the starting point. Ozone was added in the perturbed chamber to simulate mixing with background air (and subsequent NO&lt;sub&gt;3&lt;/sub&gt; production and aging) while the second chamber was used as a reference. Following the injection of ozone rapid organic aerosol (OA) formation was observed in all experiments leading to increases of the OA concentration by 20-70%. The oxygen to carbon ratio of the OA increased by 50% on average and the mass spectra of the produced OA was quite similar to that of the oxidized OA mass spectra reported during winter in urban areas. Good correlation was also observed with the produced mass spectra from nocturnal aging of laboratory biomass burning emissions showing the strong contribution of biomass burning emissions in the SOA formation during cold nights with high biomass burning activities. Concentrations of NO&lt;sub&gt;3&lt;/sub&gt; radicals as high as 25 ppt were measured in the perturbed chamber with an accompanying production of 0.2-1.2 &amp;#956;g m&lt;sup&gt;-3&lt;/sup&gt; of organic nitrate. These results strongly indicate that the OA in biomass burning plumes can evolve rapidly even during wintertime periods with low photochemical activity.&lt;/p&gt;


2020 ◽  
Author(s):  
Shibao Wang ◽  
Yun Ma ◽  
Zhongrui Wang ◽  
Lei Wang ◽  
Xuguang Chi ◽  
...  

Abstract. The development of low-cost sensors and novel calibration algorithms provides new hints to complement conventional ground-based observation sites to evaluate the spatial and temporal distribution of pollutants on hyper-local scales (tens of meters). Here we use sensors deployed on a taxi fleet to explore the air quality in the road network of Nanjing over the course of a year (Oct. 2019–Sep. 2020). Based on GIS technology, we develop a grid analysis method to obtain 50 m resolution maps of major air pollutants (CO, NO2, and O3). Through hotspots identification analysis, we find three main sources of air pollutants including traffic, industrial emissions, and cooking fumes. We find that CO and NO2 concentrations show a pattern: highways > arterial roads > secondary roads > branch roads > residential streets, reflecting traffic volume. While the O3 concentrations in these five road types are in opposite order due to the titration effect of NOx. Combined the mobile measurements and the stationary station data, we diagnose that the contribution of traffic-related emissions to CO and NO2 are 42.6 % and 26.3 %, respectively. Compared to the pre-COVID period, the concentrations of CO and NO2 during COVID-lockdown period decreased for 44.9 % and 47.1 %, respectively, and the contribution of traffic-related emissions to them both decreased by more than 50 %. With the end of the COVID-lockdown period, traffic emissions and air pollutant concentrations rebounded substantially, indicating that traffic emissions have a crucial impact on the variation of air pollutants levels in urban regions. This research demonstrates the sense power of mobile monitoring for urban air pollution, which provides detailed information for source attribution, accurate traceability, and potential mitigation strategies at urban micro-scale.


Sign in / Sign up

Export Citation Format

Share Document