scholarly journals Structure and Evolution of Non-Lake-Effect Snow Producing Alberta Clippers

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1288
Author(s):  
Jake Wiley ◽  
Andrew Mercer

Alberta Clippers (clippers) have long been associated with lake-effect snow (LES) events due to their frequent passage over the Great Lakes basin. However, not all clippers produce LES, and no research has inquired into which synoptic fields most influence LES formation. This study analyzes clippers during non-LES situations to further knowledge on which atmospheric variables most regulate LES development on the synoptic scale. As no such database currently exists, a clipper repository is developed using National Centers for Environmental Prediction Reanalysis data. The repository is then cross referenced with a previously developed LES repository to identify clippers responsible for LES. Composite synoptic-scale patterns were then constructed on the remaining non-LES clippers to identify synoptic conditions that ultimately inhibited LES formation. This analysis is supplemented by an assessment of lake surface conditions in each composite to evaluate how influential the lake characteristics were in the suppression of LES activity. In total, 51 non-LES clippers were identified, tracked, and separated into three composite map types that exhibited unique storm track and spatial characteristics. Permutation testing revealed that lake surface conditions were not significantly (p ≤ 0.05) different between LES and non-LES associated clippers implying the main LES inhibition factors were meteorological.

2017 ◽  
Vol 18 (3) ◽  
pp. 713-727 ◽  
Author(s):  
Lucia Scaff ◽  
Jose A. Rutllant ◽  
David Rahn ◽  
Simon Gascoin ◽  
Roberto Rondanelli

Abstract To better forecast streamflow and water resource availability, it is important to have an understanding of the meteorological drivers of the orographic precipitation gradient (OPG), especially critical in semiarid mountainous areas. Although forced ascent over topography typically results in precipitation increasing with altitude (positive OPGs), mean annual OPGs and especially OPGs associated with individual storms can change widely in magnitude and even sign. Precipitation measurements from the Elqui Valley in the semiarid Andes of Chile (30°S) reveal a mean annual OPG of 6.3 mm km−1 (millimeters of precipitation over kilometers in elevation) ranging from −42 to 52 mm km−1 for individual storms over the last 35 years (1979–2013). Reanalysis data and precipitation measurements are used to characterize the observed OPG in this region in relation with their synoptic-scale flow. It is found that the Froude number correlates positively with the OPG, reflecting stronger zonal winds and less static stability during storms that have positive OPGs. Altitude of the Andes barrier jet shows only a weak relationship with the OPG. Significant storms with positive OPGs are typically linked with an austral blocking of the westerlies and an equatorward migration of the midlatitude storm track. For negative OPGs, either a cutoff low or the northern edge of a surface migratory cyclone reaches the Elqui Valley in such a way that significant rainfall only occurs in the near-coastal region without major snowfall accumulation over the Andes.


2020 ◽  
Vol 21 (12) ◽  
pp. 2813-2828
Author(s):  
Ayumi Fujisaki-Manome ◽  
Greg E. Mann ◽  
Eric J. Anderson ◽  
Philip Y. Chu ◽  
Lindsay E. Fitzpatrick ◽  
...  

AbstractLake-effect convective snowstorms frequently produce high-impact, hazardous winter weather conditions downwind of the North American Great Lakes. During lake-effect snow events, the lake surfaces can cool rapidly, and in some cases, notable development of ice cover occurs. Such rapid changes in the lake-surface conditions are not accounted for in existing operational weather forecast models, such as the National Oceanic and Atmospheric Administration’s (NOAA) High-Resolution Rapid Refresh (HRRR) model, resulting in reduced performance of lake-effect snow forecasts. As a milestone to future implementations in the Great Lakes Operational Forecast System (GLOFS) and HRRR, this study examines the one-way linkage between the hydrodynamic-ice model [the Finite-Volume Community Ocean Model coupled with the unstructured grid version of the Los Alamos Sea Ice Model (FVCOM-CICE), the physical core model of GLOFS] and the atmospheric model [the Weather Research and Forecasting (WRF) Model, the physical core model of HRRR]. The realistic representation of lake-surface cooling and ice development or its fractional coverage during three lake-effect snow events was achieved by feeding the FVCOM-CICE simulated lake-surface conditions to WRF (using a regional configuration of HRRR), resulting in the improved simulation of the turbulent heat fluxes over the lakes and resulting snow water equivalent in the downwind areas. This study shows that the one-way coupling is a practical approach that is well suited to the operational environment, as it requires little to no increase in computational resources yet can result in improved forecasts of regional weather and lake conditions.


2014 ◽  
Vol 6 (2) ◽  
pp. 341-351 ◽  
Author(s):  
Chun Chang ◽  
Ping Feng ◽  
Fawen Li ◽  
Yunming Gao

Based on the Haihe river basin National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data from 1948 to 2010 and the precipitation data of 53 hydrological stations during 1957–2010, this study analyzed the variation of water vapor content and precipitation, and investigated the correlation between them using several statistical methods. The results showed that the annual water vapor content decreased drastically from 1948 to 2010. It was comparatively high from the late 1940s to the late 1960s and depreciated from the early 1970s. From the southeast to the northwest of the Haihe river basin, there was a decrease in water vapor content. For vertical distribution, water vapor content from the ground to 700 hPa pressure level accounted for 72.9% of the whole atmospheric layer, which indicated that the water vapor of the Haihe river basin was mainly in the air close to the ground. The precipitation in the Haihe river basin during 1957–2010 decreased very slightly. According to the correlation analysis, the precipitation and water vapor content changes showed statistically positive correlation, in addition, their break points were both in the 1970s. Furthermore, the high consistency between the precipitation efficiency and precipitation demonstrates that water vapor content is one of the important factors in the formation of precipitation.


2021 ◽  
Author(s):  
S. Mubashshir Ali ◽  
Olivia Martius ◽  
Matthias Röthlisberger

<p>Upper-level synoptic-scale Rossby wave packets are well-known to affect surface weather. When these Rossby wave packets occur repeatedly in the same phase at a specific location, they can result in persistent hot, cold, dry, and wet conditions. The repeated and in-phase occurrence of Rossby wave packets is termed as recurrent synoptic-scale Rossby wave packets (RRWPs). RRWPs result from multiple transient synoptic-scale wave packets amplifying in the same geographical region over several weeks.</p><p>Our climatological analyses using reanalysis data have shown that RRWPs can significantly modulate the persistence of hot, cold, dry, and wet spells in several regions in the Northern and the Southern Hemisphere.  RRWPs can both shorten or extend hot, cold, and dry spell durations. The spatial patterns of statistically significant links between RRWPs and spell durations are distinct for the type of the spell (hot, cold, dry, or wet) and the season (MJJASO or NDJFMA). In the Northern Hemisphere, the spatial patterns where RRWPs either extend or shorten the spell durations are wave-like. In the Southern Hemisphere, the spatial patterns are either wave-like (hot and cold spells) or latitudinally banded (dry and wet spells).</p><p>Furthermore, we explore the atmospheric drivers behind RRWP events. This includes both the background flow and potential wave-triggers such as the Madden Julian Oscillation or blocking. For 100 events of intense Rossby wave recurrence in the Atlantic, the background flow, the intensity of tropical convection, and the occurrence of blocking are studied using flow composites.</p>


2016 ◽  
Vol 16 (22) ◽  
pp. 14795-14803 ◽  
Author(s):  
Itaru Sano ◽  
Sonoyo Mukai ◽  
Makiko Nakata ◽  
Brent N. Holben

Abstract. Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT) aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON). We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT) decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka) was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka) and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP).


2017 ◽  
Vol 30 (17) ◽  
pp. 6999-7016 ◽  
Author(s):  
Zheng Liu ◽  
Axel Schweiger

Cloud response to synoptic conditions over the Beaufort and Chukchi seasonal ice zone is examined. Four synoptic states with distinct thermodynamic and dynamic signatures are identified using ERA-Interim reanalysis data from 2000 to 2014. CloudSat and CALIPSO observations suggest control of clouds by synoptic states. Warm continental air advection is associated with the fewest low-level clouds, while cold air advection generates the most low-level clouds. Low-level clouds are related to lower-tropospheric stability and both are regulated by synoptic conditions. High-level clouds are associated with humidity and vertical motions in the upper atmosphere. Observed cloud vertical and spatial variability is reproduced well in ERA-Interim, but winter low-level cloud fraction is overestimated. This suggests that synoptic conditions constrain the spatial extent of clouds through the atmospheric structure, while the parameterizations for cloud microphysics and boundary layer physics are critical for the life cycle of clouds in numerical models. Sea ice melt onset is related to synoptic conditions. Melt onsets occur more frequently and earlier with warm air advection. Synoptic conditions with the highest temperatures and precipitable water are most favorable for melt onsets even though fewer low-level clouds are associated with these conditions.


2022 ◽  
Author(s):  
Valerio Lembo ◽  
Federico Fabiano ◽  
Vera Melinda Galfi ◽  
Rune Graversen ◽  
Valerio Lucarini ◽  
...  

Abstract. The extratropical meridional energy transport in the atmosphere is fundamentally intermittent in nature, having extremes large enough to affect the net seasonal transport. Here, we investigate how these extreme transports are associated with the dynamics of the atmosphere at multiple scales, from planetary to synoptic. We use ERA5 reanalysis data to perform a wavenumber decomposition of meridional energy transport in the Northern Hemisphere mid-latitudes during winter and summer. We then relate extreme transport events to atmospheric circulation anomalies and dominant weather regimes, identified by clustering 500 hPa geopotential height fields. In general, planetary-scale waves determine the strength and meridional position of the synoptic-scale baroclinic activity with their phase and amplitude, but important differences emerge between seasons. During winter, large wavenumbers (k = 2 − 3) are key drivers of the meridional energy transport extremes, and planetary and synoptic-scale transport extremes virtually never co-occur. In summer, extremes are associated with higher wavenumbers (k = 4 − 6), identified as synoptic-scale motions. We link these waves and the transport extremes to recent results on exceptionally strong and persistent co-occurring summertime heat waves across the Northern Hemisphere mid-latitudes. We show that these events are typical, in terms of dominant regime patterns associated with extremely strong meridional energy transports.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 162
Author(s):  
Peng Liu ◽  
Mingyue Tang ◽  
Huaying Yu ◽  
Ying Zhang

The influence of Arctic Oscillation (AO) on the frequency of wintertime fog days in eastern China is studied based on the winter AO index, the wintertime fog-day data of national stations in China, and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1954 to 2007. The results show that heavy fog and light fog are more likely to occur during winter in eastern China with the strong interannual variability. During the winter with the positive-phase AO, there are more days of heavy fog in North China but less in South China, while light fog days become more in the whole of eastern China. It is mainly because that when AO is in the positive phase, the pressure in the polar region decreases at 500 hPa; the pressure in East Asia increases anomalously; the East Asian trough decreases; and the low-level westerly jet moves northward, preventing the northwesterly cold air from moving southward. Therefore, the whole eastern China gets warmer and wetter air, and there are more light fog days with the enhanced water vapor. However, the atmosphere merely becomes more towards unstable in South China, where the precipitation increases but the heavy fog days decreases. Nevertheless, heavy fog days increase with the water vapor in North China because of moving towards a stable atmosphere, which is formed by the anomalous downdrafts north of the precipitation center in South China. When AO is in the negative phase, the situation is basically opposite to that in the positive phase, but the variations of the corresponding fog days and circulations are weaker than those in the AO-positive-phase winter, which may be related to the nonlinear effect of AO on climate.


Sign in / Sign up

Export Citation Format

Share Document