scholarly journals Meridional energy transport extremes and the general circulation of NH mid-latitudes: dominant weather regimes and preferred zonal wavenumbers

2022 ◽  
Author(s):  
Valerio Lembo ◽  
Federico Fabiano ◽  
Vera Melinda Galfi ◽  
Rune Graversen ◽  
Valerio Lucarini ◽  
...  

Abstract. The extratropical meridional energy transport in the atmosphere is fundamentally intermittent in nature, having extremes large enough to affect the net seasonal transport. Here, we investigate how these extreme transports are associated with the dynamics of the atmosphere at multiple scales, from planetary to synoptic. We use ERA5 reanalysis data to perform a wavenumber decomposition of meridional energy transport in the Northern Hemisphere mid-latitudes during winter and summer. We then relate extreme transport events to atmospheric circulation anomalies and dominant weather regimes, identified by clustering 500 hPa geopotential height fields. In general, planetary-scale waves determine the strength and meridional position of the synoptic-scale baroclinic activity with their phase and amplitude, but important differences emerge between seasons. During winter, large wavenumbers (k = 2 − 3) are key drivers of the meridional energy transport extremes, and planetary and synoptic-scale transport extremes virtually never co-occur. In summer, extremes are associated with higher wavenumbers (k = 4 − 6), identified as synoptic-scale motions. We link these waves and the transport extremes to recent results on exceptionally strong and persistent co-occurring summertime heat waves across the Northern Hemisphere mid-latitudes. We show that these events are typical, in terms of dominant regime patterns associated with extremely strong meridional energy transports.

2021 ◽  
Author(s):  
Peter Hoffmann ◽  
Jascha Lehmann ◽  
Bijan Fallah ◽  
Fred Hattermann

<p>Changes in weather persistence are of particular concern in the context of climate change as periods of longer persistence can reinforce weather extremes. In our study we apply structural image recognition methods to global ERA5 reanalysis data to identify when, where and how long isolines of atmospheric geopotential height fields run in similar tracks. We identify regions and episodes around the world in which, retrospectively, unusually long-lasting weather patterns repeatedly occurred. Concerning the temperature and precipitation meteorological fields, we derive a connection between the occurrence of weather persistence and hydro-climatic extreme events.</p><p>Based on our new method we find that weather persistence has been particularly increasing in Northern Hemisphere mid-latitudes in summer confirming earlier studies. Here, highly populated regions like Central Europe have experienced long-term increases in persistent weather conditions of up to 4-5% between 1981 and 2019 amplifying the risk of prolonged heat waves and droughts. Further, we show that climate models tend to have difficulties in capturing the dynamics of weather persistence and thus may severely underestimate the frequency and magnitude of future extremes events in their climate projections.</p>


2012 ◽  
Vol 25 (14) ◽  
pp. 4761-4784 ◽  
Author(s):  
Ngar-Cheung Lau ◽  
Mary Jo Nath

Abstract The characteristics of summertime heat waves in North America are examined using reanalysis data and simulations by two general circulation models with horizontal resolution of 50 and 200 km. Several “key regions” with spatially coherent and high amplitude fluctuations in daily surface air temperature are identified. The typical synoptic features accompanying warm episodes in these regions are described. The averaged intensity, duration, and frequency of occurrence of the heat waves in various key regions, as simulated in the two models for twentieth-century climate, are in general agreement with the results based on reanalysis data. The impact of climate change on the heat wave characteristics in various key regions is assessed by contrasting model runs based on a scenario for the twenty-first century with those for the twentieth century. Both models indicate considerable increases in the duration and frequency of heat wave episodes, and in number of heat wave days per year, during the twenty-first century. The duration and frequency statistics of the heat waves in the mid-twenty-first century, as generated by the model with 50-km resolution, can be reproduced by adding the projected warming trend to the daily temperature data for the late twentieth century, and then recomputing these statistics. The detailed evolution of the averaged intensity, duration, and frequency of the heat waves through individual decades of the twentieth and twenty-first centuries, as simulated and projected by the model with 200-km resolution, indicates that the upward trend in these heat wave measures should become apparent in the early decades of the twenty-first century.


2005 ◽  
Vol 18 (16) ◽  
pp. 3204-3216 ◽  
Author(s):  
Yongyun Hu ◽  
Ka Kit Tung ◽  
Jiping Liu

Abstract Decadal trends are compared in various fields between Northern Hemisphere early winter, November–December (ND), and late-winter, February–March (FM), months using reanalysis data. It is found that in the extratropics and polar region the decadal trends display nearly opposite tendencies between ND and FM during the period from 1979 to 2003. Dynamical trends in late winter (FM) reveal that the polar vortex has become stronger and much colder and wave fluxes from the troposphere to the stratosphere are weaker, consistent with the positive trend of the Arctic Oscillation (AO) as found in earlier studies, while trends in ND appear to resemble a trend toward the low-index polarity of the AO. In the Tropics, the Hadley circulation shows significant intensification in both ND and FM, with stronger intensification in FM. Unlike the Hadley cell, the Ferrel cell shows opposite trends between ND and FM, with weakening in ND and strengthening in FM. Comparison of the observational results with general circulation model simulations is also discussed.


2021 ◽  
Author(s):  
Ignazio Giuntoli ◽  
Federico Fabiano ◽  
Susanna Corti

AbstractSeasonal predictions in the Mediterranean region have relevant socio-economic implications, especially in the context of a changing climate. To date, sources of predictability have not been sufficiently investigated at the seasonal scale in this region. To fill this gap, we explore sources of predictability using a weather regimes (WRs) framework. The role of WRs in influencing regional weather patterns in the climate state has generated interest in assessing the ability of climate models to reproduce them. We identify four Mediterranean WRs for the winter (DJF) season and explore their sources of predictability looking at teleconnections with sea surface temperature (SST). In particular, we assess how SST anomalies affect the WRs frequencies during winter focussing on the two WRs that are associated with the teleconnections in which the signal is more intense: the Meridional and the Anticyclonic regimes. These sources of predictability are sought in five state-of-the-art seasonal forecasting systems included in the Copernicus Climate Change Services (C3S) suite finding a weaker signal but an overall good agreement with reanalysis data. Finally, we assess the ability of the C3S models in reproducing the reanalysis data WRs frequencies finding that their moderate skill increases during ENSO intense years, indicating that this teleconnection is well reproduced by the models and yields improved predictability in the Mediterranean region.


2021 ◽  
Author(s):  
S. Mubashshir Ali ◽  
Olivia Martius ◽  
Matthias Röthlisberger

<p>Upper-level synoptic-scale Rossby wave packets are well-known to affect surface weather. When these Rossby wave packets occur repeatedly in the same phase at a specific location, they can result in persistent hot, cold, dry, and wet conditions. The repeated and in-phase occurrence of Rossby wave packets is termed as recurrent synoptic-scale Rossby wave packets (RRWPs). RRWPs result from multiple transient synoptic-scale wave packets amplifying in the same geographical region over several weeks.</p><p>Our climatological analyses using reanalysis data have shown that RRWPs can significantly modulate the persistence of hot, cold, dry, and wet spells in several regions in the Northern and the Southern Hemisphere.  RRWPs can both shorten or extend hot, cold, and dry spell durations. The spatial patterns of statistically significant links between RRWPs and spell durations are distinct for the type of the spell (hot, cold, dry, or wet) and the season (MJJASO or NDJFMA). In the Northern Hemisphere, the spatial patterns where RRWPs either extend or shorten the spell durations are wave-like. In the Southern Hemisphere, the spatial patterns are either wave-like (hot and cold spells) or latitudinally banded (dry and wet spells).</p><p>Furthermore, we explore the atmospheric drivers behind RRWP events. This includes both the background flow and potential wave-triggers such as the Madden Julian Oscillation or blocking. For 100 events of intense Rossby wave recurrence in the Atlantic, the background flow, the intensity of tropical convection, and the occurrence of blocking are studied using flow composites.</p>


2021 ◽  
pp. 1-58
Author(s):  
Chi-Cherng Hong ◽  
Wang-Ling Tseng ◽  
Huang-Hsiung Hsu ◽  
Ming-Ying Lee ◽  
Chi-Chun Chang

AbstractThe northern extratropics—including regions in northern Europe, northeast Asia, and North America—experienced extremely prolonged heat waves during May–August 2018. Record-breaking surface temperatures, which caused numerous deaths, were observed in several cities. The 2018 heat waves exhibited a circumglobal characteristic owing to a circumpolar perturbation (CCP) in the middle–upper troposphere of the Northern Hemisphere (NH). The CCP had two parts: a wave-like perturbation and a hemispheric perturbation that was almost zonally symmetric. Singular value decomposition analysis revealed that the zonally symmetric perturbation was coupled to the SST warming trend, whereas the wave-like perturbation was primarily coupled to the interannually-varying SST anomaly (SSTA), particularly in the tropical North Pacific, which reached an extreme in 2018. Numerical experiments confirmed that the zonally symmetric component was primarily resulted from the SSTA associated with the warming trend, whereas the interannually-varying SSTAs in the NH contributed mostly to the wave-like perturbation. The warming trend component of SSTA, especially that in the tropics, compounded by the unusually large SSTAs in 2018, was hypothesized to have contributed to inducing the circumpolar circulation anomaly that caused the record-breaking heat waves in the extratropical NH in 2018.


2016 ◽  
Author(s):  
Douglas G. MacMartin ◽  
Ben Kravitz

Abstract. Climate emulators trained on existing simulations can be used to project the climate effects that would result from different possible future pathways of anthropogenic forcing, without relying on general circulation model (GCM) simulations for every possible pathway. We extend this idea to include different amounts of solar geoengineering in addition to different pathways of green-house gas concentrations by training emulators from a multi-model ensemble of simulations from the Geoengineering Model Intercomparison Project (GeoMIP). The emulator is trained on the abrupt 4 x CO2 and a compensating solar reduction simulation (G1), and evaluated by comparing predictions against a simulated 1 % per year CO2 increase and a similarly smaller solar reduction (G2). We find reasonable agreement in most models for predicting changes in temperature and precipitation (including regional effects), and annual-mean Northern hemisphere sea ice extent, with the difference between simulation and prediction typically smaller than natural variability. This verifies that the linearity assumption used in constructing the emulator is sufficient for these variables over the range of forcing considered. Annual-minimum Northern hemisphere sea ice extent is less-well predicted, indicating the limits of the linearity assumption. For future pathways involving relatively small forcing from solar geoengineering, the errors introduced from nonlinear effects may be smaller than the uncertainty due to natural variability, and the emulator prediction may be a more accurate estimate of the forced component of the models' response than an actual simulation would be.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yuying Zhu ◽  
Chengying Zhu ◽  
Fan Zu ◽  
Hongbin Wang ◽  
Chengsong Yuan ◽  
...  

In the early December 2013, dense fog involving heavy pollutants lasted for 9 days in the Yancheng area. The characteristics, formation, and lasting mechanisms of this persistent fog were analyzed based on observational data at the Sheyang site, reanalysis data, and final analysis data from NCEP/NCAR, combining with the weather background and meteorological and physical variable fields. Results include that (1) the fog process was characterized by long duration, low visibility, and high pollutants concentration, (2) the atmospheric general circulation contributed to the sustainability and development of the heavily polluted fog, (3) deep inversion was the key thermal factor causing the heavily polluted fog, (4) the fog exhibited obvious outbreaks with good visibility weather turned to severe fog several times, and (5) the weak cold air invasion and radiative cooling were the triggering factors to the sudden enhancement of the fog.


Sign in / Sign up

Export Citation Format

Share Document