scholarly journals Disturbances of the Thermosphere and the Ionosphere during a Meteorological Storm

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1384
Author(s):  
Olga P. Borchevkina ◽  
Yuliya A. Kurdyaeva ◽  
Yurii A. Dyakov ◽  
Ivan V. Karpov ◽  
Gennady V. Golubkov ◽  
...  

Determination of the physical mechanisms of energy transfer of tropospheric disturbances to the ionosphere is one of the fundamental problems of atmospheric physics. This article presents the results of observations carried out using two-wavelength lidar sensing at tropospheric altitudes and satellite GPS measurements during a meteorological storm in Kaliningrad (Russia, 54.7° N, 20.5° E) on 1 April 2016. During lidar sensing, it was found that the amplitudes of variations in atmospheric parameters with periods of acoustic (AWs) and internal gravity (IGWs) waves significantly increased. As a result of numerical modeling using the AtmoSym software package, it was shown that there is a noticeable increase in the period of temperature disturbances from 6–12 min to 10–17 min at altitudes from 150 km up to 230 km during the vertical propagation of acoustic waves and internal gravity waves from the troposphere. Nonlinear and dissipative processes in this layer lead to the formation of sources of secondary waves in the thermosphere with periods longer than those of primary ones. In this case, the unsteady nature of the wave source and the short duration of its operation does not lead to significant heating of the thermosphere. Simultaneous satellite observations demonstrate the response of the ionosphere (total electron content (TEC) disturbance) to tropospheric disturbances. Analysis of the time series of the amplitudes of the reflected lidar signal and TEC made it possible to determine that the response time of the ionosphere to tropospheric disturbances is 30–40 min.

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1116
Author(s):  
Olga P. Borchevkina ◽  
Sergey O. Adamson ◽  
Yurii A. Dyakov ◽  
Ivan V. Karpov ◽  
Gennady V. Golubkov ◽  
...  

Determination of the physical mechanisms of the energy transfer of tropospheric disturbances to the ionosphere is one of the fundamental problems of atmospheric physics. This article presents the observational results of tropospheric and ionospheric disturbances during the passages of the solar terminator and solar eclipse. Lidar observations showed the occurrence of tropospheric regions with noticeably increased amplitudes of density, pressure, and temperature variations with periods corresponding to acoustic and internal gravity waves, which were generated in the troposphere during the development of these events. Simultaneous satellite measurements demonstrate the response of the ionosphere to these tropospheric disturbances. Based on the experimental data, we determine the typical periods and spatial scales of variations. It is shown that the response time of the ionosphere to tropospheric disturbances is 30–40 min.


2004 ◽  
Vol 22 (1) ◽  
pp. 47-62 ◽  
Author(s):  
E. L. Afraimovich ◽  
E. I. Astafieva ◽  
S. V. Voyeikov

Abstract. We investigate an unusual class of medium-scale traveling ionospheric disturbances of the nonwave type, isolated ionospheric disturbances (IIDs) that manifest themselves in total electron content (TEC) variations in the form of single aperiodic negative TEC disturbances of a duration of about 10min (the total electron content spikes, TECS). The data were obtained using the technology of global detection of ionospheric disturbances using measurements of TEC variations from a global network of receivers of the GPS. For the first time, we present the TECS morphology for 170 days in 1998–2001. The total number of TEC series, with a duration of each series of about 2.3h (2h18m), exceeded 850000. It was found that TECS are observed in no more than 1–2% of the total number of TEC series mainly in the nighttime in the spring and autumn periods. The TECS amplitude exceeds the mean value of the "background" TEC variation amplitude by a factor of 5–10 as a minimum. TECS represent a local phenomenon with a typical radius of spatial correlation not larger than 500km. The IID-induced TEC variations are similar in their amplitude, form and duration to the TEC response to shock-acoustic waves (SAW) generated during rocket launchings and earthquakes. However, the IID propagation velocity is less than the SAW velocity (800–1000m/s) and are most likely to correspond to the velocity of background medium-scale acoustic-gravity waves, on the order of 100–200m/s. Key words. Ionosphere (ionospheric irregularities, instruments and techniques) - Radio science (ionospheric propagation)


2006 ◽  
Vol 24 (8) ◽  
pp. 2159-2168 ◽  
Author(s):  
P. V. S. Rama Rao ◽  
K. Niranjan ◽  
D. S. V. V. D. Prasad ◽  
S. Gopi Krishna ◽  
G. Uma

Abstract. The GPS data provides an effective way to estimate the total electron content (TEC) from the differential time delay of L1 and L2 transmissions from the GPS. The spacing of the constellation of GPS satellites in orbits are such that a minimum of four GPS satellites are observed at any given point in time from any location on the ground. Since these satellites are in different parts of the sky and the electron content in the ionosphere varies both spatially and temporally, the ionospheric pierce point (IPP) altitude or the assumed altitude of the centroid of mass of the ionosphere plays an important role in converting the vertical TEC from the measured slant TEC and vice versa. In this paper efforts are made to examine the validity of the IPP altitude of 350 km in the Indian zone comprising of the ever-changing and dynamic ionosphere from the equator to the ionization anomaly crest region and beyond, using the simultaneous ionosonde data from four different locations in India. From this data it is found that the peak electron density height (hpF2) varies from about 275 to 575 km at the equatorial region, and varies marginally from 300 to 350 km at and beyond the anomaly crest regions. Determination of the effective altitude of the IPP employing the inverse method suggested by Birch et al. (2002) did not yield any consistent altitude in particular for low elevation angles, but varied from a few hundred to one thousand kilometers and beyond in the Indian region. However, the vertical TEC computed from the measured GPS slant TEC for different IPP altitudes ranging from 250 to 750 km in the Indian region has revealed that the TEC does not change significantly with the IPP altitude, as long as the elevation angle of the satellite is greater than 50 degrees. However, in the case of satellites with lower elevation angles (<50°), there is a significant departure in the TEC computed using different IPP altitudes from both methods. Therefore, the IPP altitude of 350 km may be taken as valid even in the Indian sector but only in the cases of satellite passes with elevation angles greater than 50°.


2019 ◽  
Vol 178 ◽  
pp. 104696 ◽  
Author(s):  
Kirk M. Scanlan ◽  
Cyril Grima ◽  
Gregor Steinbrügge ◽  
Scott D. Kempf ◽  
Duncan A. Young ◽  
...  

2017 ◽  
Vol 35 (3) ◽  
pp. 599-612 ◽  
Author(s):  
Andrew J. Mazzella Jr. ◽  
John Bosco Habarulema ◽  
Endawoke Yizengaw

Abstract. The confluence of recent instrumentation deployments in Africa with developments for the determination of plasmasphere electron content using Global Positioning System (GPS) receivers has provided new opportunities for investigations in that region. This investigation, using a selected chain of GPS stations, extends the method (SCORPION) previously applied to a chain of GPS stations in North America in order to separate the ionosphere and plasmasphere contributions to the total electron content (TEC) during a day (24 July) in 2011. The results span latitudes from the southern tip of Africa, across the Equator, to the southern Arabian Peninsula, providing a continuous latitudinal profile for both the ionosphere and plasmasphere during this day.The peak diurnal vertical ionosphere electron content (IEC) increases from about 14 TEC units (1 TEC unit  =  1016 electrons m−2) at the southernmost station to about 32 TEC units near the geographic equator, then decreases to about 28 TEC units at the Arabian Peninsula. The peak diurnal slant plasmasphere electron content (PEC) varies between about 4 and 7 TEC units among the stations, with a local latitudinal profile that is significantly influenced by the viewing geometry at the station location, relative to the magnetic field configuration. In contrast, the peak vertical PEC varies between about 1 and 6 TEC units among the stations, with a more uniform latitudinal variation.Comparisons to other GPS data analyses are also presented for TEC, indicating the influence of the PEC on the determination of latitudinal TEC variations and also on the absolute TEC levels, by inducing an overestimate of the receiver bias. The derived TEC latitudinal profiles, in comparison to global map profiles, tend to differ from the map results only about as much as the map results differ among themselves. A combination of ionosonde IEC and alternative GPS TEC measurements, which in principle permits a PEC determination through their difference, was compared to the composite and separate ionosphere and plasmasphere contributions derived solely by the SCORPION method for one station. Although there is considerably more scatter in the PEC values derived from the difference of the GPS TEC and ionosonde IEC measurements compared to the PEC values derived by the SCORPION method, the average overhead values for this day are comparable for the two methods, near 2 TEC units, at the South African site examined.This initial investigation provides a basis for day-to-day TEC monitoring for Africa, with separate ionosphere and plasmasphere electron content determinations.


2004 ◽  
Vol 22 (8) ◽  
pp. 2741-2746 ◽  
Author(s):  
N. Beloff ◽  
P. F. Denisenko ◽  
I. I. Ivanov ◽  
O. A. Maltseva ◽  
M. P. Gough ◽  
...  

Abstract. A new experimental technique is presented for the determination of the total electron content (TEC) below a low-orbiting satellite. According to this technique TEC can be obtained using the segment of a topside ionogram that only contains the traces of signals reflected from the Earth's surface. Possibilities of this technique were demonstrated using MIR station topside sounding data at the night time for both quiet and disturbed ionospheric conditions, and in particular, during the 14 November 1998 storm. An interesting fact was revealed with the help of this technique: after a series of relatively strong storms the main ionospheric trough on 14 November 1998 was detected at an abnormally low geomagnetic latitude (~43°). During this study some spatial variations of TEC were registered that can be interpreted as a TID-type wave structure.


Sign in / Sign up

Export Citation Format

Share Document