scholarly journals Modification of a Cylindrical Mirror Analyzer for High Efficiency Photoelectron Spectroscopy on Ion Beams

Atoms ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 63
Author(s):  
Francis Penent ◽  
Denis Cubaynes ◽  
Pascal Lablanquie ◽  
Jérôme Palaudoux ◽  
Ségolène Guilbaud ◽  
...  

An existing cylindrical mirror analyzer (CMA) that was initially equipped with eight channeltrons detectors has been modified to install large micro-channel plate detectors to perform parallel detection of electrons on an energy range corresponding to ~12% of the mean pass energy. This analyzer is dedicated to photoelectron spectroscopy of ions ionized by synchrotron radiation. The overall detection efficiency is increased by a factor of ~20 compared to the original analyzer. A proof of principle of the efficiency of the analyzer has been done for Xe5+ and Si+ ions and will allow photoelectron spectroscopy on many other ionic species.

2014 ◽  
Vol 38 (8) ◽  
pp. 086003 ◽  
Author(s):  
Yang Tian ◽  
Yi-Gang Yang ◽  
Jing-Sheng Pan ◽  
Yu-Lan Li ◽  
Yuan-Jing Li

Author(s):  
Huang Min ◽  
P.S. Flora ◽  
C.J. Harland ◽  
J.A. Venables

A cylindrical mirror analyser (CMA) has been built with a parallel recording detection system. It is being used for angular resolved electron spectroscopy (ARES) within a SEM. The CMA has been optimised for imaging applications; the inner cylinder contains a magnetically focused and scanned, 30kV, SEM electron-optical column. The CMA has a large inner radius (50.8mm) and a large collection solid angle (Ω > 1sterad). An energy resolution (ΔE/E) of 1-2% has been achieved. The design and performance of the combination SEM/CMA instrument has been described previously and the CMA and detector system has been used for low voltage electron spectroscopy. Here we discuss the use of the CMA for ARES and present some preliminary results.The CMA has been designed for an axis-to-ring focus and uses an annular type detector. This detector consists of a channel-plate/YAG/mirror assembly which is optically coupled to either a photomultiplier for spectroscopy or a TV camera for parallel detection.


Author(s):  
X. Zhang ◽  
J. Spence ◽  
W. Qian ◽  
D. Taylor ◽  
K. Taylor

Experimental point-projection shadow microscope (PPM) images of uncoated, unstained purple membrane (PM, bacteriorhodopsin, a membrane protein from Halobacterium holobium) were obtained recently using 100 volt electrons. The membrane thickness is about 5 nm and the hexagonal unit cell dimension 6 nm. The images show contrast around the edges of small holes, as shown in figure 1. The interior of the film is opaque. Since the inelastic mean free path for 100V electrons in carbon (about 6 Å) is much less than the sample thickness, the question arises that how much, if any, transmission of elastically scattered electrons occurs. A large inelastic contribution is also expected, attenuated by the reduced detection efficiency of the channel plate at low energies. Quantitative experiments using an energy-loss spectrometer are planned. Recently Shedd has shown that at about 100V contrast in PPM images of thin gold films can be explained as Fresnel interference effects between different pinholes in the film, separated by less than the coherence width.


2009 ◽  
Vol 129 (12) ◽  
pp. 461-468
Author(s):  
Keishi Sakuma ◽  
Kohro Takahashi

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2525
Author(s):  
Kamil Krasuski ◽  
Damian Wierzbicki

In the field of air navigation, there is a constant pursuit for new navigation solutions for precise GNSS (Global Navigation Satellite System) positioning of aircraft. This study aims to present the results of research on the development of a new method for improving the performance of PPP (Precise Point Positioning) positioning in the GPS (Global Positioning System) and GLONASS (Globalnaja Nawigacionnaja Sputnikovaya Sistema) systems for air navigation. The research method is based on a linear combination of individual position solutions from the GPS and GLONASS systems. The paper shows a computational scheme based on the linear combination for geocentric XYZ coordinates of an aircraft. The algorithm of the new research method uses the weighted mean method to determine the resultant aircraft position. The research method was tested on GPS and GLONASS kinematic data from an airborne experiment carried out with a Seneca Piper PA34-200T aircraft at the Mielec airport. A dual-frequency dual-system GPS/GLONASS receiver was placed on-board the plane, which made it possible to record GNSS observations, which were then used to calculate the aircraft’s position in CSRS-PPP software. The calculated XYZ position coordinates from the CSRS-PPP software were then used in the weighted mean model’s developed optimization algorithm. The measurement weights are a function of the number of GPS and GLONASS satellites and the inverse of the mean error square. The obtained coordinates of aircraft from the research model were verified with the RTK-OTF solution. As a result of the research, the presented solution’s accuracy is better by 11–87% for the model with a weighting scheme as a function of the inverse of the mean error square. Moreover, using the XYZ position from the RTKLIB program, the research method’s accuracy increases from 45% to 82% for the model with a weighting scheme as a function of the inverse of the square of mean error. The developed method demonstrates high efficiency for improving the performance of GPS and GLONASS solutions for the PPP measurement technology in air navigation.


2002 ◽  
Vol 09 (01) ◽  
pp. 583-586
Author(s):  
KOTA IWASAKI ◽  
KOICHIRO MITSUKE

A new angle-resolving electron energy analyzer composed of a conical electrostatic prism and a position-sensitive detector was developed for gas phase photoelectron spectroscopy. The performance of the analyzer has been tested by measuring photoelectron spectra of Ar using a helium discharge lamp. The angular resolution of 3° was achieved at the pass energy E of 5.6 eV. The best energy resolution was ΔE/E = 0.043 at E = 1.4 eV .


2020 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Alamri Rahmah Dhahawi Ahmad ◽  
Saifullahi Shehu Imam ◽  
Wen Da Oh ◽  
Rohana Adnan

In this work, FeM composites consisting of montmorillonite and variable amounts of Fe3O4 were successfully synthesized via a facile co-precipitation process. They were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), N2 adsorption-desorption, and Fourier transform infrared spectroscopy (FT-IR) techniques to explain the effect of Fe3O4 content on the physicochemical properties of the Fe3O4-montmorillonite (FeM) composites. The FeM composites were subsequently used as heterogeneous Fenton catalysts to activate green oxidant (H2O2) for the subsequent degradation of ofloxacin (OFL) antibiotic. The efficiency of the FeM composites was studied by varying various parameters of Fe3O4 loading on montmorillonite, catalyst dosage, initial solution pH, initial OFL concentration, different oxidants, H2O2 dosage, reaction temperature, inorganic salts, and solar irradiation. Under the conditions of 0.75 g/L FeM-10, 5 mL/L H2O2, and natural pH, almost 81% of 50 mg/L of OFL was removed within 120 min in the dark, while total organic carbon (TOC) reduction was about 56%. Moreover, the FeM-10 composite maintained high efficiency and was stable even after four continuous cycles, making it a promising candidate in real wastewater remediation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tao Ding ◽  
Qian Wu ◽  
Mianping Zheng ◽  
Zhen Nie ◽  
Min Li ◽  
...  

Lithium, as the lightest alkali metal, is widely used in military and new energy applications. With the rapid growth in demand for lithium resources, it has become necessary to improve the effectiveness of extraction thereof. By using chemical grafting and electrospinning techniques, nanofibres containing crown ether were developed for adsorbing Li(I) from the brine in salt lakes, so as to selectively adsorb Li(I) on the premise of retaining specific vacancies of epoxy groups in crown ether. In lithium-containing solution, the adsorbing materials can reach adsorption equilibrium within three hours, and the maximum adsorption capacity is 4.8 mg g−1. The adsorption mechanisms of the adsorbing materials for Li(I) were revealed by combining Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) with density functional theory (DFT) calculation. The results indicated that in crown ether, O in epoxy groups was coordinated with Li(I) to form Li–O and four O atoms in the epoxy groups were used as electron donors. After coordination, two O atoms protruded from the plane and formed a tetrahedral structure with Li(I), realising the specific capture of Li(I). By desorbing fibres that adsorbed Li(I) with 0.5-M HCl, the adsorption capacity only decreased by 10.4% after five cycles, proving ability to regenerate such materials. The nanofibres containing crown ether synthesised by chemical grafting and electrospinning have the potential to be used in extracting lithium resources from the brine in salt lakes.


Sign in / Sign up

Export Citation Format

Share Document