scholarly journals Decomposition, Mapping, and Sum Theorems of ω-Paracompact Topological Spaces

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 339
Author(s):  
Samer Al Al Ghour

As a weaker form of ω-paracompactness, the notion of σ-ω-paracompactness is introduced. Furthermore, as a weaker form of σ-ω-paracompactness, the notion of feebly ω-paracompactness is introduced. It is proven hereinthat locally countable topological spaces are feebly ω-paracompact. Furthermore, it is proven hereinthat countably ω-paracompact σ-ω-paracompact topological spaces are ω-paracompact. Furthermore, it is proven hereinthat σ-ω-paracompactness is inverse invariant under perfect mappings with countable fibers, and as a result, is proven hereinthat ω-paracompactness is inverse invariant under perfect mappings with countable fibers. Furthermore, if A is a locally finite closed covering of a topological space X,τ with each A∈A being ω-paracompact and normal, then X,τ is ω-paracompact and normal, and as a corollary, a sum theorem for ω-paracompact normal topological spaces follows. Moreover, three open questions are raised.

1976 ◽  
Vol 19 (1) ◽  
pp. 117-119
Author(s):  
H. L. Shapiro ◽  
F. A. Smith

Recently there has been a great deal of interest in extending refinements of locally finite and point finite collections on subsets of certain topological spaces. In particular the first named author showed that a subset S of a topological space X is P-embedded in X if and only if every locally finite cozero-set cover on S has a refinement that can be extended to a locally finite cozero-set cover of X. Since then many authors have studied similar types of embeddings (see [1], [2], [3], [4], [6], [8], [9], [10], [11], and [12]). Since the above characterization of P-embedding is equivalent to extending continuous pseudometrics from the subspace S up to the whole space X, it is natural to wonder when can a locally finite or a point finite open or cozero-set cover on S be extended to a locally finite or point-finite open or cozero-set cover on X.


2011 ◽  
Vol 83 (2) ◽  
pp. 321-328
Author(s):  
MARÍA MUÑOZ

AbstractLetXbe a topological space. A family ℬ of nonempty open sets inXis called aπ-base ofXif for each open setUinXthere existsB∈ℬ such thatB⊂U. The order of aπ-base ℬ at a pointxis the cardinality of the family ℬx={B∈ℬ:x∈B} and the order of theπ-base ℬ is the supremum of the orders of ℬ at each pointx∈X. A classical theorem of Shapirovskiĭ [‘Special types of embeddings in Tychonoff cubes’, in:Subspaces of Σ-Products and Cardinal Invariants, Topology, Coll. Math. Soc. J. Bolyai, 23 (North-Holland, Amsterdam, 1980), pp. 1055–1086; ‘Cardinal invariants in compact Hausdorff spaces’,Amer. Math. Soc. Transl.134(1987), 93–118] establishes that the minimum order of aπ-base is bounded by the tightness of the space when the space is compact. Since then, there have been many attempts at improving the result. Finally, in [‘The projectiveπ-character bounds the order of aπ-base’,Proc. Amer. Math. Soc.136(2008), 2979–2984], Juhász and Szentmiklóssy proved that the minimum order of aπ-base is bounded by the ‘projectiveπ-character’ of the space for any topological space (not only for compact spaces), improving Shapirovskiĭ’s theorem. The projectiveπ-character is in some sense an ‘external’ cardinal function. Our purpose in this paper is, on the one hand, to give bounds of the projectiveπ-character using ‘internal’ topological properties of the subspaces on compact spaces. On the other hand, we give a bound on the minimum order of aπ-base using other cardinal functions in the frame of general topological spaces. Open questions are posed.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3168
Author(s):  
Samer Al Ghour

In this paper, we introduce the class of soft semi ω-open sets of a soft topological space (X,τ,A), using soft ω-open sets. We show that the class of soft semi ω-open sets contains both the soft topology τω and the class of soft semi-open sets. Additionally, we define soft semi ω-closed sets as the class of soft complements of soft semi ω-open sets. We present here a study of the properties of soft semi ω-open sets, especially in (X,τ,A) and (X,τω,A). In particular, we prove that the class of soft semi ω-open sets is closed under arbitrary soft union but not closed under finite soft intersections; we also study the correspondence between the soft topology of soft semi ω-open sets of a soft topological space and their generated topological spaces and vice versa. In addition to these, we introduce the soft semi ω-interior and soft semi ω-closure operators via soft semi ω-open and soft semi ω-closed sets. We prove several equations regarding these two new soft operators. In particular, we prove that these operators can be calculated using other usual soft operators in both of (X,τ,A) and (X,τω,A), and some equations focus on soft anti-locally countable soft topological spaces.


Filomat ◽  
2016 ◽  
Vol 30 (9) ◽  
pp. 2475-2487 ◽  
Author(s):  
Sang-Eon Han

Since a locally finite topological structure plays an important role in the fields of pure and applied topology, the paper studies a special kind of locally finite spaces, so called a space set topology (for brevity, SST) and further, proves that an SST is an Alexandroff space satisfying the separation axiom T0. Unlike a point set topology, since each element of an SST is a space, the present paper names the topology by the space set topology. Besides, for a connected topological space (X,T) with |X| = 2 the axioms T0, semi-T1/2 and T1/2 are proved to be equivalent to each other. Furthermore, the paper shows that an SST can be used for studying both continuous and digital spaces so that it plays a crucial role in both classical and digital topology, combinatorial, discrete and computational geometry. In addition, a connected SST can be a good example showing that the separation axiom semi-T1/2 does not imply T1/2.


2019 ◽  
Vol 7 (1) ◽  
pp. 250-252 ◽  
Author(s):  
Tobias Fritz

Abstract In this short note, we prove that the stochastic order of Radon probability measures on any ordered topological space is antisymmetric. This has been known before in various special cases. We give a simple and elementary proof of the general result.


Author(s):  
B. J. Day ◽  
G. M. Kelly

We are concerned with the category of topological spaces and continuous maps. A surjection f: X → Y in this category is called a quotient map if G is open in Y whenever f−1G is open in X. Our purpose is to answer the following three questions:Question 1. For which continuous surjections f: X → Y is every pullback of f a quotient map?Question 2. For which continuous surjections f: X → Y is f × lz: X × Z → Y × Z a quotient map for every topological space Z? (These include all those f answering to Question 1, since f × lz is the pullback of f by the projection map Y ×Z → Y.)Question 3. For which topological spaces Z is f × 1Z: X × Z → Y × Z a qiptoent map for every quotient map f?


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Amit Kumar Singh ◽  
Rekha Srivastava

In this paper we have studied separation axiomsTi,i=0,1,2in an intuitionistic fuzzy topological space introduced by Coker. We also show the existence of functorsℬ:IF-Top→BF-Topand𝒟:BF-Top→IF-Topand observe that𝒟is left adjoint toℬ.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dipankar Dey ◽  
Dhananjay Mandal ◽  
Manabendra Nath Mukherjee

PurposeThe present article deals with the initiation and study of a uniformity like notion, captioned μ-uniformity, in the context of a generalized topological space.Design/methodology/approachThe existence of uniformity for a completely regular topological space is well-known, and the interrelation of this structure with a proximity is also well-studied. Using this idea, a structure on generalized topological space has been developed, to establish the same type of compatibility in the corresponding frameworks.FindingsIt is proved, among other things, that a μ-uniformity on a non-empty set X always induces a generalized topology on X, which is μ-completely regular too. In the last theorem of the paper, the authors develop a relation between μ-proximity and μ-uniformity by showing that every μ-uniformity generates a μ-proximity, both giving the same generalized topology on the underlying set.Originality/valueIt is an original work influenced by the previous works that have been done on generalized topological spaces. A kind of generalization has been done in this article, that has produced an intermediate structure to the already known generalized topological spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fatemah Ayatollah Zadeh Shirazi ◽  
Meysam Miralaei ◽  
Fariba Zeinal Zadeh Farhadi

In the following text, we want to study the behavior of one point compactification operator in the chain Ξ := {Metrizable, Normal, T2, KC, SC, US, T1, TD, TUD, T0, Top} of subcategories of category of topological spaces, Top (where we denote the subcategory of Top, containing all topological spaces with property P , simply by P). Actually we want to know, for P∈Ξ and X∈P, the one point compactification of topological space X belongs to which elements of Ξ. Finally we find out that the chain {Metrizable, T2, KC, SC, US, T1, TD, TUD, T0, Top} is a forwarding chain with respect to one point compactification operator.


2001 ◽  
Vol 27 (8) ◽  
pp. 505-512 ◽  
Author(s):  
José Carlos Rodríguez Alcantud

We extend van Dalen and Wattel's (1973) characterization of orderable spaces and their subspaces by obtaining analogous results for two larger classes of topological spaces. This type of spaces are defined by considering preferences instead of linear orders in the former definitions, and possess topological properties similar to those of (totally) orderable spaces (cf. Alcantud, 1999). Our study provides particular consequences of relevance in mathematical economics; in particular, a condition equivalent to the existence of a continuous preference on a topological space is obtained.


Sign in / Sign up

Export Citation Format

Share Document