scholarly journals SOC Estimation of a Rechargeable Li-Ion Battery Used in Fuel-Cell Hybrid Electric Vehicles—Comparative Study of Accuracy and Robustness Performance Based on Statistical Criteria. Part I: Equivalent Models

Batteries ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 42 ◽  
Author(s):  
Roxana-Elena Tudoroiu ◽  
Mohammed Zaheeruddin ◽  
Nicolae Tudoroiu ◽  
Sorin-Mihai Radu

Battery state of charge (SOC) accuracy plays a vital role in a hybrid electric vehicle (HEV), as it ensures battery safety in a harsh operating environment, prolongs life, lowers the cost of energy consumption, and improves driving mileage. Therefore, accurate SOC battery estimation is the central idea of the approach in this research, which is of great interest to readers and increases the value of its application. Moreover, an accurate SOC battery estimate relies on the accuracy of the battery model parameters and its capacity. Thus, the purpose of this paper is to design, implement and analyze the SOC estimation accuracy of two battery models, which capture the dynamics of a rechargeable SAFT Li-ion battery. The first is a resistor capacitor (RC) equivalent circuit model, and the second is a generic Simscape model. The model validation is based on the generation and evaluation of the SOC residual error. The SOC reference value required for the calculation of residual errors is the value estimated by an ADVISOR 3.2 simulator, one of the software tools most used in automotive applications. Both battery models are of real interest as a valuable support for SOC battery estimation by using three model based Kalman state estimators developed in Part 2. MATLAB simulations results prove the effectiveness of both models and reveal an excellent accuracy.

2019 ◽  
Vol 118 ◽  
pp. 02025 ◽  
Author(s):  
Kaihui Feng ◽  
Bibin Huang ◽  
Qionghui Li ◽  
Hu Yan

The purpose of this paper is to discuss how to eliminate the influence of noise time -varying characteristics on the accuracy of SOC estimation. Based on the matlab/simulink platform, the Thevenin equivalent circuit model of the battery is built, and an improved Adaptive Extend Kalman Filter (AEKF) is designed, which is compared with the Extend Kalman filter algorithm (EKF).The simulation results are shown that the improved AEKF algorithm results in effective online estimation SOC and the estimation accuracy is higher than the EKF algorithm.


2009 ◽  
Vol 189 (1) ◽  
pp. 490-493 ◽  
Author(s):  
Youh Sato ◽  
Katsuhiro Nagayama ◽  
Yuichi Sato ◽  
Tsutomu Takamura

2013 ◽  
Vol 805-806 ◽  
pp. 1659-1663 ◽  
Author(s):  
Ze Cheng ◽  
Qiu Yan Zhang ◽  
Yu Hui Zhang

The real-timely estimation of the SOC (state of charge) is the key technology in Li-ion battery management system. In this paper, to overcome the error of the SOC estimation of Extended Kalman filter (EKF), a new estimation method based on modified-strong tracking filter (MSTF) is applied to SOC estimation of Li-ion battery, based on the second-order RC equivalent circuit model. Experiments are made to compare the new filter with the EKF and Coulomb counting approach (Ah). The simulation results demonstrate that the new filter algorithm MSTF used in this paper has higher filtering accuracy under the same conditions.


Sign in / Sign up

Export Citation Format

Share Document