scholarly journals Screening of Potential Indonesia Herbal Compounds Based on Multi-Label Classification for 2019 Coronavirus Disease

2021 ◽  
Vol 5 (4) ◽  
pp. 75
Author(s):  
Aulia Fadli ◽  
Wisnu Ananta Kusuma ◽  
Annisa ◽  
Irmanida Batubara ◽  
Rudi Heryanto

Coronavirus disease 2019 pandemic spreads rapidly and requires an acceleration in the process of drug discovery. Drug repurposing can help accelerate the drug discovery process by identifying new efficacy for approved drugs, and it is considered an efficient and economical approach. Research in drug repurposing can be done by observing the interactions of drug compounds with protein related to a disease (DTI), then predicting the new drug-target interactions. This study conducted multilabel DTI prediction using the stack autoencoder-deep neural network (SAE-DNN) algorithm. Compound features were extracted using PubChem fingerprint, daylight fingerprint, MACCS fingerprint, and circular fingerprint. The results showed that the SAE-DNN model was able to predict DTI in COVID-19 cases with good performance. The SAE-DNN model with a circular fingerprint dataset produced the best average metrics with an accuracy of 0.831, recall of 0.918, precision of 0.888, and F-measure of 0.89. Herbal compounds prediction results using the SAE-DNN model with the circular, daylight, and PubChem fingerprint dataset resulted in 92, 65, and 79 herbal compounds contained in herbal plants in Indonesia respectively.

2020 ◽  
Vol 12 (20) ◽  
pp. 1815-1828 ◽  
Author(s):  
Witor Ribeiro Ferraz ◽  
Renan Augusto Gomes ◽  
Andre Luis S Novaes ◽  
Gustavo Henrique Goulart Trossini

Aim: The identification of drugs for the coronavirus disease-19 pandemic remains urgent. In this manner, drug repurposing is a suitable strategy, saving resources and time normally spent during regular drug discovery frameworks. Essential for viral replication, the main protease has been explored as a promising target for the drug discovery process. Materials & methods: Our virtual screening pipeline relies on the known 3D properties of noncovalent ligands and features of crystalized complexes, applying consensus analyses in each step. Results: Two oral (bedaquiline and glibenclamide) and one buccal drug (miconazole) presented 3D similarity to known ligands, reasonable predicted binding modes and micromolar predicted binding affinity values. Conclusion: We identified three approved drugs as promising inhibitors of the main viral protease and suggested design insights for future studies for development of novel selective inhibitors.


2019 ◽  
Vol 24 (10) ◽  
pp. 2076-2085 ◽  
Author(s):  
Vineela Parvathaneni ◽  
Nishant S. Kulkarni ◽  
Aaron Muth ◽  
Vivek Gupta

2021 ◽  
Vol 22 (4) ◽  
pp. 1573
Author(s):  
Nischal Karki ◽  
Niraj Verma ◽  
Francesco Trozzi ◽  
Peng Tao ◽  
Elfi Kraka ◽  
...  

Severe Acute Respiratory Syndrome Corona Virus 2 has altered life on a global scale. A concerted effort from research labs around the world resulted in the identification of potential pharmaceutical treatments for CoVID-19 using existing drugs, as well as the discovery of multiple vaccines. During an urgent crisis, rapidly identifying potential new treatments requires global and cross-discipline cooperation, together with an enhanced open-access research model to distribute new ideas and leads. Herein, we introduce an application of a deep neural network based drug screening method, validating it using a docking algorithm on approved drugs for drug repurposing efforts, and extending the screen to a large library of 750,000 compounds for de novo drug discovery effort. The results of large library screens are incorporated into an open-access web interface to allow researchers from diverse fields to target molecules of interest. Our combined approach allows for both the identification of existing drugs that may be able to be repurposed and de novo design of ACE2-regulatory compounds. Through these efforts we demonstrate the utility of a new machine learning algorithm for drug discovery, SSnet, that can function as a tool to triage large molecular libraries to identify classes of molecules with possible efficacy.


Author(s):  
Mark A. Griep ◽  
Marjorie L. Mikasen

ReAction! gives a scientist's and artist's response to the dark and bright sides of chemistry found in 140 films, most of them contemporary Hollywood feature films but also a few documentaries, shorts, silents, and international films. Even though there are some examples of screen chemistry between the actors and of behind-the-scenes special effects, this book is really about the chemistry when it is part of the narrative. It is about the dualities of Dr. Jekyll vs. inventor chemists, the invisible man vs. forensic chemists, chemical weapons vs. classroom chemistry, chemical companies that knowingly pollute the environment vs. altruistic research chemists trying to make the world a better place to live, and, finally, about people who choose to experiment with mind-altering drugs vs. the drug discovery process. Little did Jekyll know when he brought the Hyde formula to his lips that his personality split would provide the central metaphor that would come to describe chemistry in the movies. This book explores the two movie faces of this supposedly neutral science. Watching films with chemical eyes, Dr. Jekyll is recast as a chemist engaged in psychopharmaceutical research but who becomes addicted to his own formula. He is balanced by the often wacky inventor chemists who make their discoveries by trial-and-error.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 546
Author(s):  
Miroslava Nedyalkova ◽  
Vasil Simeonov

A cheminformatics procedure for a partitioning model based on 135 natural compounds including Flavonoids, Saponins, Alkaloids, Terpenes and Triterpenes with drug-like features based on a descriptors pool was developed. The knowledge about the applicability of natural products as a unique source for the development of new candidates towards deadly infectious disease is a contemporary challenge for drug discovery. We propose a partitioning scheme for unveiling drug-likeness candidates with properties that are important for a prompt and efficient drug discovery process. In the present study, the vantage point is about the matching of descriptors to build the partitioning model applied to natural compounds with diversity in structures and complexity of action towards the severe diseases, as the actual SARS-CoV-2 virus. In the times of the de novo design techniques, such tools based on a chemometric and symmetrical effect by the implied descriptors represent another noticeable sign for the power and level of the descriptors applicability in drug discovery in establishing activity and target prediction pipeline for unknown drugs properties.


Sign in / Sign up

Export Citation Format

Share Document