scholarly journals From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges

2020 ◽  
Vol 7 (3) ◽  
pp. 92
Author(s):  
Mariana A. Branco ◽  
Joaquim M.S. Cabral ◽  
Maria Margarida Diogo

The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.

Biomaterials ◽  
2019 ◽  
Vol 222 ◽  
pp. 119431 ◽  
Author(s):  
Ji Young Park ◽  
Jiyou Han ◽  
Hyo Sung Jung ◽  
Gyunggyu Lee ◽  
Hyo Jin Kim ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
pp. 101-119 ◽  
Author(s):  
Alyssa J. Miller ◽  
David R. Hill ◽  
Melinda S. Nagy ◽  
Yoshiro Aoki ◽  
Briana R. Dye ◽  
...  

2019 ◽  
Author(s):  
Richard L Carpenedo ◽  
Sarah Y Kwon ◽  
R Matthew Tanner ◽  
Julien Yockell-Lelièvre ◽  
Chandarong Choey ◽  
...  

SummaryHuman pluripotent stem cells (hPSCs) are an essential cell source in tissue engineering, studies of development, and disease modeling. Efficient, broadly amenable protocols for rapid lineage induction of hPSCs are of great interest in the stem cell biology field. We describe a simple, robust method for differentiation of hPSCs into mesendoderm in defined conditions utilizing single-cell seeding (SCS) and BMP4 and Activin A (BA) treatment. Gene sets and gene ontology terms related to mesoderm and endoderm differentiation were enriched after 48 hours of BA treatment. BA treatment was readily incorporated into existing protocols for chondrogenic and endothelial progenitor cell differentiation. After prolonged differentiation in vitro or in vivo, BA pre-treatment resulted in higher mesoderm and endoderm levels at the expense of ectoderm formation. These data demonstrate that SCS with BA treatment is a powerful method for induction of mesendoderm that can be integrated into protocols for mesoderm and endoderm differentiation.


2019 ◽  
Vol 116 (21) ◽  
pp. 10441-10446 ◽  
Author(s):  
Xiao Han ◽  
Mengning Wang ◽  
Songwei Duan ◽  
Paul J. Franco ◽  
Jennifer Hyoje-Ryu Kenty ◽  
...  

Polymorphic HLAs form the primary immune barrier to cell therapy. In addition, innate immune surveillance impacts cell engraftment, yet a strategy to control both, adaptive and innate immunity, is lacking. Here we employed multiplex genome editing to specifically ablate the expression of the highly polymorphic HLA-A/-B/-C and HLA class II in human pluripotent stem cells. Furthermore, to prevent innate immune rejection and further suppress adaptive immune responses, we expressed the immunomodulatory factors PD-L1, HLA-G, and the macrophage “don’t-eat me” signal CD47 from the AAVS1 safe harbor locus. Utilizing in vitro and in vivo immunoassays, we found that T cell responses were blunted. Moreover, NK cell killing and macrophage engulfment of our engineered cells were minimal. Our results describe an approach that effectively targets adaptive as well as innate immune responses and may therefore enable cell therapy on a broader scale.


2016 ◽  
Vol 2 (8) ◽  
pp. e1600691 ◽  
Author(s):  
Heemin Kang ◽  
Yu-Ru V. Shih ◽  
Manando Nakasaki ◽  
Harsha Kabra ◽  
Shyni Varghese

The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)–derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs.


2021 ◽  
Vol 30 (161) ◽  
pp. 210042
Author(s):  
Pien A. Goldsteen ◽  
Christina Yoseif ◽  
Amalia M. Dolga ◽  
Reinoud Gosens

Respiratory diseases are among the leading causes of morbidity and mortality worldwide, representing a major unmet medical need. New chemical entities rarely make it into the clinic to treat respiratory diseases, which is partially due to a lack of adequate predictive disease models and the limited availability of human lung tissues to model respiratory disease. Human pluripotent stem cells (hPSCs) may help fill this gap by serving as a scalable human in vitro model. In addition, human in vitro models of rare genetic mutations can be generated using hPSCs. hPSC-derived epithelial cells and organoids have already shown great potential for the understanding of disease mechanisms, for finding new potential targets by using high-throughput screening platforms, and for personalised treatments. These potentials can also be applied to other hPSC-derived lung cell types in the future. In this review, we will discuss how hPSCs have brought, and may continue to bring, major changes to the field of respiratory diseases by understanding the molecular mechanisms of the pathology and by finding efficient therapeutics.


2020 ◽  
Vol 20 (2) ◽  
pp. 1307-1314
Author(s):  
Denglu Zhang ◽  
Xiaohang Du ◽  
Xufeng Zhang ◽  
Kailin Li ◽  
Feng Kong ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Alejandro Hidalgo-Gonzalez ◽  
Dmitry A Ovchinnikov ◽  
James Hudson ◽  
Justin Cooper-White ◽  
Wolvetang Ernst

The sarcolemmal Na+/Ca2+ exchanger SLC8A1(NCX) regulates intracellular Ca+ in cardiomyocytes from early developmental stages. The upstream-most SLC8A1(NCX1) promoter is well conserved amongst the homoeothermic animals and contains putative binding sites for transcription factors of the NKX, GATA, STAT and CDX families. We hypothesized that functional cardiac cells with mature cardiac structural markers will express the sarcolemmal Na+/Ca2+ calcium antiporting channel, important for proper functional contractivity of in vitro differentiated human pluripotent stem cells. Pseudotyped lentiviral particles delivering NCX1cp-EGFP reporter cassette were used to confirm the efficiency and specificity of the reporter in rodent foetal cardiac cell isolates, and to establish stable human pluripotent stem cell lines. Cells were differentiated using a 2D induction protocol, and gene expression analysis and protein quantification carried at day 16. Initial NCX1cp-EGFP expression was observed from day 10-11 of cardiac differentiation. Beating foci were visualized 1-2 day after initial NCXCP-EGFP expression, reporter expression was confined to the grouped and individual beating cells, and highly correlated with the efficiency of spontaneously contractile cell production. At later stages, NCX1cp-EGFP expression correlated with clusters of formed spontaneously contractile units harbouring essentially all cardiomyocytes present in cultures, as evidenced by colocalization of high levels of cardiac troponin T (cTnT) and α-actinin proteins. The EGFP+ sorted fraction of differentiated cultures was found to be highly enriched in both early (ISL1, TBX5) and late (cTnT, MYH6) cardiomyocyte markers when compared to the EGFP- fraction. We conclude that a ~3 kb genomic fragment of the distal cardiac-specific promoter of the SLC8A1(NCX1) containing the upstream-most exon of the gene is sufficient to drive the expression of a lentiviral reporter in both rodent heart-derived primary and human (embryonic and induced) pluripotent stem cell-derived cardiac cells. Isolation of a homogenous and functional cardiomyogenic population represents one of the key objectives for cardiac tissue engineering, and in particular in vitro drug screening applications.


2021 ◽  
Author(s):  
Vukasin M. Jovanovic ◽  
Claire Malley ◽  
Carlos A. Tristan ◽  
Seungmi Ryu ◽  
Pei-Hsuan Chu ◽  
...  

AbstractDerivation of astrocytes from human pluripotent stem cells (hPSCs) is inefficient and cumbersome, impeding their use in biomedical research. Here, we developed a highly efficient chemically defined astrocyte differentiation strategy that overcomes current limitations. This approach largely bypasses neurogenesis, which otherwise precedes astrogliogenesis during brain development and in vitro experiments. hPSCs were first differentiated into radial glial cells (RGCs) exhibiting in vivo-like radial glia signatures. Activation of NOTCH and JAK/STAT pathways in bona fide RGCs resulted in direct astrogliogenesis confirmed by expression of various glial markers (NFIA, NFIB, SOX9, CD44, S100B, GFAP). Transcriptomic and genome-wide epigenetic analyses confirmed RGC-to-astrocyte differentiation and absence of neurogenesis. The morphological and functional identity of hPSC-derived astrocytes was confirmed by using an array of methods (e.g. electron microscopy, calcium imaging, co-culture with neurons, grafting into mouse brains). Lastly, the scalable protocol was adapted to a robotic platform and used to model Alexander disease. In conclusion, our findings uncover remarkable plasticity in neural lineage progression that can be exploited to manufacture large numbers of human hPSC-derived astrocytes for drug development and regenerative medicine.


2021 ◽  
Vol 22 (7) ◽  
pp. 3751
Author(s):  
Ana Rita Gomes ◽  
Tiago G. Fernandes ◽  
Joaquim M.S. Cabral ◽  
Maria Margarida Diogo

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Among many different roles, MeCP2 has a high phenotypic impact during the different stages of brain development. Thus, it is essential to intensively investigate the function of MeCP2, and its regulated targets, to better understand the mechanisms of the disease and inspire the development of possible therapeutic strategies. Several animal models have greatly contributed to these studies, but more recently human pluripotent stem cells (hPSCs) have been providing a promising alternative for the study of RTT. The rapid evolution in the field of hPSC culture allowed first the development of 2D-based neuronal differentiation protocols, and more recently the generation of 3D human brain organoid models, a more complex approach that better recapitulates human neurodevelopment in vitro. Modeling RTT using these culture platforms, either with patient-specific human induced pluripotent stem cells (hiPSCs) or genetically-modified hPSCs, has certainly contributed to a better understanding of the onset of RTT and the disease phenotype, ultimately allowing the development of high throughput drugs screening tests for potential clinical translation. In this review, we first provide a brief summary of the main neurological features of RTT and the impact of MeCP2 mutations in the neuropathophysiology of this disease. Then, we provide a thorough revision of the more recent advances and future prospects of RTT modeling with human neural cells derived from hPSCs, obtained using both 2D and organoids culture systems, and its contribution for the current and future clinical trials for RTT.


Sign in / Sign up

Export Citation Format

Share Document