scholarly journals Transcriptomically-guided mesendoderm induction of human pluripotent stem cells using a systematically defined culture scheme

2019 ◽  
Author(s):  
Richard L Carpenedo ◽  
Sarah Y Kwon ◽  
R Matthew Tanner ◽  
Julien Yockell-Lelièvre ◽  
Chandarong Choey ◽  
...  

SummaryHuman pluripotent stem cells (hPSCs) are an essential cell source in tissue engineering, studies of development, and disease modeling. Efficient, broadly amenable protocols for rapid lineage induction of hPSCs are of great interest in the stem cell biology field. We describe a simple, robust method for differentiation of hPSCs into mesendoderm in defined conditions utilizing single-cell seeding (SCS) and BMP4 and Activin A (BA) treatment. Gene sets and gene ontology terms related to mesoderm and endoderm differentiation were enriched after 48 hours of BA treatment. BA treatment was readily incorporated into existing protocols for chondrogenic and endothelial progenitor cell differentiation. After prolonged differentiation in vitro or in vivo, BA pre-treatment resulted in higher mesoderm and endoderm levels at the expense of ectoderm formation. These data demonstrate that SCS with BA treatment is a powerful method for induction of mesendoderm that can be integrated into protocols for mesoderm and endoderm differentiation.

2020 ◽  
Vol 21 (16) ◽  
pp. 5867
Author(s):  
Hui Huang ◽  
Taylor N. Bader ◽  
Sha Jin

Diabetes is one of the leading causes of death globally. Currently, the donor pancreas is the only source of human islets, placing extreme constraints on supply. Hence, it is imperative to develop renewable islets for diabetes research and treatment. To date, extensive efforts have been made to derive insulin-secreting cells from human pluripotent stem cells with substantial success. However, the in vitro generation of functional islet organoids remains a challenge due in part to our poor understanding of the signaling molecules indispensable for controlling differentiation pathways towards the self-assembly of functional islets from stem cells. Since this process relies on a variety of signaling molecules to guide the differentiation pathways, as well as the culture microenvironments that mimic in vivo physiological conditions, this review highlights extracellular matrix proteins, growth factors, signaling molecules, and microenvironments facilitating the generation of biologically functional pancreatic endocrine cells from human pluripotent stem cells. Signaling pathways involved in stepwise differentiation that guide the progression of stem cells into the endocrine lineage are also discussed. The development of protocols enabling the generation of islet organoids with hormone release capacities equivalent to native adult islets for clinical applications, disease modeling, and diabetes research are anticipated.


2021 ◽  
Author(s):  
Dimitrios Voulgaris ◽  
Polyxeni Nikolakopoulou ◽  
Anna Herland

Generating astrocytes from induced pluripotent stem cells has been hampered by either prolonged differentiation -spanning over two months -or by shorter protocols that generate immature astrocytes, devoid of salient inflammation-associated astrocytic traits pivotal for CNS neuropathological modeling. We directed human neural stem cells derived from induced pluripotent stem cells to astrocytic commitment and maturity by orchestrating an astrocytic-tuned culturing environment. In under 28 days, the generated cells express canonical and mature astrocytic markers, denoted by the expression of AQP4 and, remarkably, the expression and functionality of glutamate transporter EAAT2. We also show that this protocol generates astrocytes that encompass traits critical in CNS disease modeling, such as glutathione synthesis and secretion, upregulation of ICAM-1 and a cytokine secretion profile which is on par with primary astrocytes. This protocol generates a multifaceted astrocytic model suitable for CNS in vitro disease modeling and personalized medicine through brain-on-chip technologies.


Author(s):  
Hao Xu ◽  
Liying Wu ◽  
Guojia Yuan ◽  
Xiaolu Liang ◽  
Xiaoguang Liu ◽  
...  

: Hepatic disease negatively impacts liver function and metabolism. Primary human hepatocytes are the gold standard for the prediction and successful treatment of liver disease. However, the sources of hepatocytes for drug toxicity testing and disease modeling are limited. To overcome this issue, pluripotent stem cells (PSCs) have emerged as an alternative strategy for liver disease therapy. Human PSCs, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) can self-renew and give rise to all cells of the body. Human PSCs are attractive cell sources for regenerative medicine, tissue engineering, drug discovery, and developmental studies. Several recent studies have shown that mesenchymal stem cells (MSCs) can also differentiate (or trans-differentiate) into hepatocytes. Differentiation of human PSCs and MSCs into functional hepatocyte-like cells (HLCs) opens new strategies to study genetic diseases, hepatotoxicity, infection of hepatotropic viruses, and analyze hepatic biology. Numerous in vitro and in vivo differentiation protocols have been established to obtain human PSCs/MSCs-derived HLCs and mimic their characteristics. It was recently discovered that microRNAs (miRNAs) play a critical role in controlling the ectopic expression of transcription factors and governing the hepatocyte differentiation of human PSCs and MSCs. In this review, we focused on the role of miRNAs in the differentiation of human PSCs and MSCs into hepatocytes.


Biomaterials ◽  
2019 ◽  
Vol 222 ◽  
pp. 119431 ◽  
Author(s):  
Ji Young Park ◽  
Jiyou Han ◽  
Hyo Sung Jung ◽  
Gyunggyu Lee ◽  
Hyo Jin Kim ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
pp. 101-119 ◽  
Author(s):  
Alyssa J. Miller ◽  
David R. Hill ◽  
Melinda S. Nagy ◽  
Yoshiro Aoki ◽  
Briana R. Dye ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2746
Author(s):  
Nasa Xu ◽  
Jianbo Wu ◽  
Jose L. Ortiz-Vitali ◽  
Yong Li ◽  
Radbod Darabi

Advancements in reprogramming somatic cells into induced pluripotent stem cells (iPSCs) have provided a strong framework for in vitro disease modeling, gene correction and stem cell-based regenerative medicine. In cases of skeletal muscle disorders, iPSCs can be used for the generation of skeletal muscle progenitors to study disease mechanisms, or implementation for the treatment of muscle disorders. We have recently developed an improved directed differentiation method for the derivation of skeletal myogenic progenitors from hiPSCs. This method allows for a short-term (2 weeks) and efficient skeletal myogenic induction (45–65% of the cells) in human pluripotent stem cells (ESCs/iPSCs) using small molecules to induce mesoderm and subsequently myotomal progenitors, without the need for any gene integration or modification. After initial differentiation, skeletal myogenic progenitors can be purified from unwanted cells using surface markers (CD10+CD24−). These myogenic progenitors have been extensively characterized using in vitro gene expression/differentiation profiling as well as in vivo engraftment studies in dystrophic (mdx) and muscle injury (VML) rodent models and have been proven to be able to engraft and form mature myofibers as well as seeding muscle stem cells. The current protocol describes a detailed, step-by-step guide for this method and outlines important experimental details and troubleshooting points for its application in any human pluripotent stem cells.


2019 ◽  
Vol 116 (21) ◽  
pp. 10441-10446 ◽  
Author(s):  
Xiao Han ◽  
Mengning Wang ◽  
Songwei Duan ◽  
Paul J. Franco ◽  
Jennifer Hyoje-Ryu Kenty ◽  
...  

Polymorphic HLAs form the primary immune barrier to cell therapy. In addition, innate immune surveillance impacts cell engraftment, yet a strategy to control both, adaptive and innate immunity, is lacking. Here we employed multiplex genome editing to specifically ablate the expression of the highly polymorphic HLA-A/-B/-C and HLA class II in human pluripotent stem cells. Furthermore, to prevent innate immune rejection and further suppress adaptive immune responses, we expressed the immunomodulatory factors PD-L1, HLA-G, and the macrophage “don’t-eat me” signal CD47 from the AAVS1 safe harbor locus. Utilizing in vitro and in vivo immunoassays, we found that T cell responses were blunted. Moreover, NK cell killing and macrophage engulfment of our engineered cells were minimal. Our results describe an approach that effectively targets adaptive as well as innate immune responses and may therefore enable cell therapy on a broader scale.


2020 ◽  
Vol 7 (3) ◽  
pp. 92
Author(s):  
Mariana A. Branco ◽  
Joaquim M.S. Cabral ◽  
Maria Margarida Diogo

The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.


2016 ◽  
Vol 2 (8) ◽  
pp. e1600691 ◽  
Author(s):  
Heemin Kang ◽  
Yu-Ru V. Shih ◽  
Manando Nakasaki ◽  
Harsha Kabra ◽  
Shyni Varghese

The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)–derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs.


Sign in / Sign up

Export Citation Format

Share Document