scholarly journals An Experimentally Defined Hypoxia Gene Signature in Glioblastoma and Its Modulation by Metformin

Biology ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 264
Author(s):  
Marta Calvo Tardón ◽  
Eliana Marinari ◽  
Denis Migliorini ◽  
Viviane Bes ◽  
Stoyan Tankov ◽  
...  

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor, characterized by a high degree of intertumoral heterogeneity. However, a common feature of the GBM microenvironment is hypoxia, which can promote radio- and chemotherapy resistance, immunosuppression, angiogenesis, and stemness. We experimentally defined common GBM adaptations to physiologically relevant oxygen gradients, and we assessed their modulation by the metabolic drug metformin. We directly exposed human GBM cell lines to hypoxia (1% O2) and to physioxia (5% O2). We then performed transcriptional profiling and compared our in vitro findings to predicted hypoxic areas in vivo using in silico analyses. We observed a heterogenous hypoxia response, but also a common gene signature that was induced by a physiologically relevant change in oxygenation from 5% O2 to 1% O2. In silico analyses showed that this hypoxia signature was highly correlated with a perinecrotic localization in GBM tumors, expression of certain glycolytic and immune-related genes, and poor prognosis of GBM patients. Metformin treatment of GBM cell lines under hypoxia and physioxia reduced viable cell number, oxygen consumption rate, and partially reversed the hypoxia gene signature, supporting further exploration of targeting tumor metabolism as a treatment component for hypoxic GBM.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1574-1574 ◽  
Author(s):  
Xiangmeng Wang ◽  
Po Yee Mak ◽  
Hong Mu ◽  
Xuejie Jiang ◽  
Duncan Mak ◽  
...  

Abstract Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates cell adhesion, proliferation, stem cell functions, and cell-microenvironment communications. It is activated and/or overexpressed in many malignant cells and promotes tumor progression and metastasis. Several small molecule FAK inhibitors have been developed and some of them have reached clinical trials in solid tumors. High FAK expression was found to be associated with enhanced blast migration, increased cellularity, and poor prognosis in AML, indicating that FAK could be a potential therapeutic target in AML. We showed previously that VS-4718, a potent and selective FAK inhibitor, effectively decreased viable cell number, and also induced cell death in leukemia cell lines with variable potencies in vitro, even in AML cells co-cultured with mesenchymal stromal cells (MSCs) (ASH 2015). To further examine the effect of VS-4718 in vivo, we transplanted Molm14-GFP/Luc cells into NSGS (NOD-SCID IL2Rgnull-3/GM/SF, NSG-SGM3) mice, and treated the mice with VS-4718 (75 mg/kg) twice a day via oral gavage. We found that VS-4718 as a single agent exerted anti-leukemia activity as assessed by in vivo imaging for leukemia burden, human CD45 positivity in mouse peripheral blood, and histological staining of mouse tissues. VS-4718 treated mice survived significantly longer than the untreated controls (medium survival 27 vs 20 days, P = 0.0003). FAK activates multiple signaling pathways and supports tumor cell survival. We found that inhibition of FAK with VS-4718 in Molm14 cells reduced the expression of MCL-1. The BCL-2 antagonist ABT-199 is being tested clinically for the treatment of hematological malignancies. However, as a single agent, ABT-199-treated cells can acquire drug resistance by upregulating MCL-1 and BCL-XL after treatment. We therefore hypothesized that combination of VS-4718 and ABT-199 would be more effective in inducing cell death and reversing the resistance of AML cells exposed to ABT-199 alone. In vitro studies showed that VS-4718 significantly improved the potency of ABT-199 in AML cell lines (ABT-199 EC50 at 24 h: 880.3 nM and 14.5 nM in the presence of 0.4 mM VS-4718, respectively, in Molm14 cells), and the combination of VS-4718 and ABT-199 also synergistically killed primary AML cells even when co-cultured with MSCs in the majority of samples examined, while largely sparing normal BM CD34+ cells. Furthermore, the upregulation of MCL-1 in ABT-199-treated AML cells was antagonized by combining ABT-199 with VS-4718. BCL-XL is known to be regulated by STAT5. The activation of STAT5, which can be regulated by FAK, is considered to be significant in maintaining MCL-1 expression in FLT3-ITD AML cells. We observed that treatment with VS-4718 decreased the level of p-STAT5 as well as MCL-1 and BCL-XL in Molm14 cells harboring FLT3-ITD mutation. These results suggest a novel therapeutic strategy for targeting FAK and BCL-2 family proteins for the treatment of AML. Disclosures Pachter: Verastem, Inc: Employment. Weaver:Verastem, Inc: Employment. Carter:PRISM Pharma/Eisai: Research Funding.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3226-3239 ◽  
Author(s):  
Ping Zhou ◽  
Liping Qian ◽  
Christine K. Bieszczad ◽  
Randolph Noelle ◽  
Michael Binder ◽  
...  

Abstract Mcl-1 is a member of the Bcl-2 family that is expressed in early monocyte differentiation and that can promote viability on transfection into immature myeloid cells. However, the effects of Mcl-1 are generally short lived compared with those of Bcl-2 and are not obvious in some transfectants. To further explore the effects of this gene, mice were produced that expressed Mcl-1 as a transgene in hematolymphoid tissues. The Mcl-1 transgene was found to cause moderate viability enhancement in a wide range of hematopoietic cell types, including lymphoid (B and T) as well as myeloid cells at both immature and mature stages of differentiation. However, enhanced hematopoietic capacity in transgenic bone marrow and spleen was not reflected in any change in pool sizes in the peripheral blood. In addition, among transgenic cells, mature T cells remained long lived compared with B cells and macrophages could live longer than either of these. Interestingly, when hematopoietic cells were maintained in tissue culture in the presence of interleukin-3, Mcl-1 enhanced the probability of outgrowth of continuously proliferating myeloid cell lines. Thus, Mcl-1 transgenic cells remained subject to normal in vivo homeostatic mechanisms controlling viable cell number, but these constraints could be overridden under specific conditions in vitro. Within the organism, Bcl-2 family members may act at “viability gates” along the differentiation continuum, functioning as part of a system for controlled hematopoietic cell amplification. Enforced expression of even a moderate viability-promoting member of this family such as Mcl-1, within a conducive intra- and extracellular environment in isolation from normal homeostatic constraints, can substantially increase the probability of cell immortalization. © 1998 by The American Society of Hematology.


2020 ◽  
Vol 22 (9) ◽  
pp. 1302-1314 ◽  
Author(s):  
Cavan P Bailey ◽  
Mary Figueroa ◽  
Achintyan Gangadharan ◽  
Yanwen Yang ◽  
Megan M Romero ◽  
...  

Abstract Background Diffuse midline gliomas (DMG), including brainstem diffuse intrinsic pontine glioma (DIPG), are incurable pediatric high-grade gliomas (pHGG). Mutations in the H3 histone tail (H3.1/3.3-K27M) are a feature of DIPG, rendering them therapeutically sensitive to small-molecule inhibition of chromatin modifiers. Pharmacological inhibition of lysine-specific demethylase 1 (LSD1) is clinically relevant but has not been carefully investigated in pHGG or DIPG. Methods Patient-derived DIPG cell lines, orthotopic mouse models, and pHGG datasets were used to evaluate effects of LSD1 inhibitors on cytotoxicity and immune gene expression. Immune cell cytotoxicity was assessed in DIPG cells pretreated with LSD1 inhibitors, and informatics platforms were used to determine immune infiltration of pHGG. Results Selective cytotoxicity and an immunogenic gene signature were established in DIPG cell lines using clinically relevant LSD1 inhibitors. Pediatric HGG patient sequencing data demonstrated survival benefit of this LSD1-dependent gene signature. Pretreatment of DIPG with these inhibitors increased lysis by natural killer (NK) cells. Catalytic LSD1 inhibitors induced tumor regression and augmented NK cell infusion in vivo to reduce tumor burden. CIBERSORT analysis of patient data confirmed NK infiltration is beneficial to patient survival, while CD8 T cells are negatively prognostic. Catalytic LSD1 inhibitors are nonperturbing to NK cells, while scaffolding LSD1 inhibitors are toxic to NK cells and do not induce the gene signature in DIPG cells. Conclusions LSD1 inhibition using catalytic inhibitors is selectively cytotoxic and promotes an immune gene signature that increases NK cell killing in vitro and in vivo, representing a therapeutic opportunity for pHGG. Key Points 1. LSD1 inhibition using several clinically relevant compounds is selectively cytotoxic in DIPG and shows in vivo efficacy as a single agent. 2. An LSD1-controlled gene signature predicts survival in pHGG patients and is seen in neural tissue from LSD1 inhibitor–treated mice. 3. LSD1 inhibition enhances NK cell cytotoxicity against DIPG in vivo and in vitro with correlative genetic biomarkers.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3226-3239 ◽  
Author(s):  
Ping Zhou ◽  
Liping Qian ◽  
Christine K. Bieszczad ◽  
Randolph Noelle ◽  
Michael Binder ◽  
...  

Mcl-1 is a member of the Bcl-2 family that is expressed in early monocyte differentiation and that can promote viability on transfection into immature myeloid cells. However, the effects of Mcl-1 are generally short lived compared with those of Bcl-2 and are not obvious in some transfectants. To further explore the effects of this gene, mice were produced that expressed Mcl-1 as a transgene in hematolymphoid tissues. The Mcl-1 transgene was found to cause moderate viability enhancement in a wide range of hematopoietic cell types, including lymphoid (B and T) as well as myeloid cells at both immature and mature stages of differentiation. However, enhanced hematopoietic capacity in transgenic bone marrow and spleen was not reflected in any change in pool sizes in the peripheral blood. In addition, among transgenic cells, mature T cells remained long lived compared with B cells and macrophages could live longer than either of these. Interestingly, when hematopoietic cells were maintained in tissue culture in the presence of interleukin-3, Mcl-1 enhanced the probability of outgrowth of continuously proliferating myeloid cell lines. Thus, Mcl-1 transgenic cells remained subject to normal in vivo homeostatic mechanisms controlling viable cell number, but these constraints could be overridden under specific conditions in vitro. Within the organism, Bcl-2 family members may act at “viability gates” along the differentiation continuum, functioning as part of a system for controlled hematopoietic cell amplification. Enforced expression of even a moderate viability-promoting member of this family such as Mcl-1, within a conducive intra- and extracellular environment in isolation from normal homeostatic constraints, can substantially increase the probability of cell immortalization. © 1998 by The American Society of Hematology.


2005 ◽  
Vol 13 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Zanka Bojic-Trbojevic ◽  
Miroslava Jankovic ◽  
Ljiljana Vicovac

BACKGROUND: JAr and Jeg-3 choriocarcinoma cell lines are model systems for the transformed trophoblast and allow studies of phenotype and regulatory factors for particular cell functions. Both cell lines express the receptor for insulin-like growth factor-I (IGF-I). Effects of IGF-I on adhesion, proliferation and galectin-1 production in JAr and Jeg-3 cells were studied. METHODS: The effects of IGF-I on proliferation and galectin-1 production were examined by thiazolyl blue assay and cell based solid phase assay using polyclonal anti-galectin-1 antibodies. The cell adhesion assay was performed on Matrigel coated wells. Galectin-1 production and localization was examined by immunocytochemistry. RESULTS: IGF-I decreased adhesion of JAr cells to 70% of the control value (p<0.05). Cell treatment with 10 ?g/L of IGF-I significantly increased viable cell number: by 13.5% in JAr and 6% in Jeg-3. Gal-1 was immunolocalized intracellularly and associated with the cell membrane in both cell lines. Production of galectin-1 was significantly increased after treatment with IGF-I compared to control: by 7% in JAr cells and by 16% in Jeg-3 cells (p<0.05). CONCLUSION: The data showed that IGF-I affected adhesion and proliferation of choriocarcinoma cells, depending on the cell line. Both choriocarcinoma cell lines studied here produced galectin-1. The amount of galectin-1 was moderately stimulated by IGF-I.


2005 ◽  
Vol 14 (2-3) ◽  
pp. 139-149 ◽  
Author(s):  
C. L. Stabler ◽  
R. C. Long ◽  
I. Constantinidis ◽  
A. Sambanis

Direct, noninvasive monitoring of tissue engineered substitutes containing live, functional cells would provide valuable information on dynamic changes that occur postimplantation. Such changes include remodeling both within the construct and at the interface of the implant with the surrounding host tissue, and may result in changes in the number of viable cells in the construct. This study investigated the use of 1H NMR spectroscopy in noninvasively monitoring the viable cell number within a tissue engineered construct in vivo. The construct consisted of mouse βTC3 insulinomas in a disk-shaped agarose gel, surrounded by a cell-free agarose gel layer. Localized 1H NMR spectra were acquired from within implanted constructs, and the total choline resonance was measured. Critical issues that had to be addressed in accurately quantifying total choline from the implanted cells included avoiding signal from host tissue and correcting for interfering signal from diffusing solutes. In vivo NMR measurements were correlated with MTT assays and NMR measurements performed in vitro on explanted constructs. Total choline measurements accurately and noninvasively quantified viable βTC3 cell numbers in vivo, in the range of 1 × 106 to more than 14 × 106 cells, and monitored changes in viable cell number that occurred in the same construct over time. This is the first study using NMR techniques to monitor viable cell numbers in an implanted tissue substitute. It established architectural characteristics that a construct should have to be amenable to NMR monitoring, and it set the foundation for future in vivo investigations with other tissue engineered implants.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi81-vi81
Author(s):  
Dimpy Koul ◽  
Veerakumar Balasubramaniyan ◽  
Xiaolong Li ◽  
Sabbir Khan ◽  
Davide Guggi ◽  
...  

Abstract Glioblastoma (GBM) remains an incurable tumor with median overall survival of 15 months despite radiation and alkylating temozolomide (TMZ) chemotherapy. DNA damage response (DDR) pathways are among the most important key players of oncogenic mutations associated with resistance to both chemotherapy and radiation in GBM. The high frequency of alterations in DDR pathways in GBM suggests that its inhibition by DDR inhibitors may render GBM cells more susceptible to DNA damaging interventions. Here, we report the preclinical in vitro and in vivo activity of a novel, orally bioavailable Ataxia-telangiectasia mutated serine/threonine protein kinase and Rad3-related (ATR) inhibitor LR02 (Laevoroc Oncology) in a panel of 15 well-characterized glioma stem-like cells (GSCs). Effects on cell proliferation, survival and tumor formation were analyzed following treatment with LR02. Growth inhibition was time- and dose-dependent with a 3-day exposure resulting in a growth inhibitory IC50 (gIC50) in the low nM range in all the glioblastoma cell lines tested. LR02 inhibited growth of GSCs at IC50 values ranging from 500nmol/L to-~2umol/L. Additional studies showed that temozolomide sensitized GSC to LR02. Importantly, we demonstrate that MGMT promotor methylation status was associated with cellular response to LR02 treatment with preferential inhibition of cell growth in MGMT promotor methylated (MGMT deficient) cell lines. LR02 showed efficacy and survival benefit in a GSC262 (MGMT methylated) orthotopic model of GBM. Further administration of LR02 further enhanced the in vivo antitumor efficacy of temozolomide (TMZ) against GBM using the GSC262 model demonstrating that ATR inhibitor LR02 may enhance alkylating agent-mediated cytotoxicity and provide a novel treatment combination for GBM patients. Our present findings establish that the ATR inhibitor LR02 can specifically be used in tumors with MGMT deficiency when combined with alkylating chemotherapy. Further studies are ongoing to evaluate the potential of LR02 to overcome radiation and chemotherapy resistance in glioblastoma.


Medicines ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 116 ◽  
Author(s):  
Hiroshi Sakagami ◽  
Masahiro Sugimoto ◽  
Yumiko Kanda ◽  
Yukio Murakami ◽  
Osamu Amano ◽  
...  

Background: Sodium-5,6-benzylidene-L-ascorbate (SBA), and its component units, benzaldehyde (BA) and sodium ascorbate (SA), are known to exert antitumor activity, while eugenol exerts anti-inflammatory activity. To narrow down their intracellular targets, metabolomic analysis was performed. Methods: Viable cell number was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Fine cell structures were observed under transmission electron microscope. Cellular metabolites were extracted with methanol and subjected to capillary electrophoresis-mass spectrometry (CE-MS) for quantification of intracellular metabolites. Results: SBA was cleaved into BA and SA under acidic condition. Among these three compounds, BA showed the highest-tumor specificity in vitro against human oral squamous cell carcinoma (OSCC) cell line. BA did not induce the vacuolization in HSC-2 OSCC cells, and its cytotoxicity was not inhibited by catalase, in contrast to SBA and SA. Only BA suppressed the tricarboxylic acid (TCA) cycle at early stage of cytotoxicity induction. Eugenol more rapidly induced the vacuolization and suppressed the TCA cycle in three human normal oral cells (gingival fibroblast, periodontal ligament fibroblast, pulp cell). Neither BA nor eugenol affected the ATP utilization, further supporting that they do not induce apoptosis. Conclusions: The present study demonstrated for the first time that both BA and eugenol suppressed the TCA cycle in tumor cells and normal cells, respectively. It is crucial to design methodology that enhances the antitumor potential of BA and reduces the cytotoxicity of eugenol to allow for safe clinical application.


HPB ◽  
2016 ◽  
Vol 18 ◽  
pp. e303
Author(s):  
A. Amin ◽  
S. Daoud ◽  
N. Zaki ◽  
K. Salehi-Ashtiani ◽  
A. Al-Hrout ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2011-2011
Author(s):  
Dean Smith ◽  
Kwee L Yong ◽  
David Mann

Abstract Introduction: Multiple Myeloma (MM) tumours are characterised by dysregulated expression of a D-type cyclin, usually either D1 or D2. Tumours expressing D1 or D2 fall into distinct genetic subtypes, distinguished by transcriptome profiles and clinical features, including outcomes of therapy. D-type cyclins control entry to the cell cycle, and we have previously shown that cell cycle entry is regulated differently in D1 versus D2 tumours (Glassford et al, 2007, 2012, Quinn et al, 2011), but little is known of how these tumours differ in the cell cycle response to DNA damaging agents, used commonly in anti-MM therapy. DNA damage activates checkpoint pathways, delaying cell cycle progression to facilitate DNA repair. Cyclin D binds to, and activates, CDK4 and CDK6, leading to phosphorylation of pRb. Cyclin D/CDK4/6 complexes also bind and sequester p21 and p27, thus controlling the activity of CDK2 and progression through G1/S phases. Aim: To investigate the effect of ionising radiation on cyclin D1 and D2 in MM cells, cell cycle profiles, CDK4/6 complex formation and apoptosis. Methods: Human myeloma cell lines (HMCL) expressing cyclin D1 in association with t(11;14) (KMS12BM, U266, XG1), or D2 in conjunction with t(4;14)(H929, JIM3, OPM2, KMS28) or t(14;16)(MM1.s, JJN3, RPMI8226) and CD138+ primary MM cells were irradiated using an electrical source xray machine and immuno-blotted (IB) for cell cycle proteins, PI staining for DNA profiles and AnnexinV/PI staining for apoptosis. Results: Ionising radiation (IR, ≥5Gy) resulted in rapid (6 hours) downregulation of cyclin D1 in D1-expressing HMCL and primary CD138+ MM cells. In contrast, cyclin D2 was unchanged with IR in D2 HMCL and in D2 primary CD138+ cells harbouring t(4;14) or t(14;16). This is likely because cyclin D2 lacks the cleavage site (Agami et al, 2000). Neither CDK4 nor CDK6 levels changed with IR. Rapid proteolysis of cyclin D1 in non-MM cells causes early (4-6 hours) cell cycle arrest at G1/S due to hypophosphorylation of pRb and release of p21 (Agami et al, 2000, Shimura et al , 2010). We found, however, that cyclin D1 MM cells did not exhibit early arrest in G1, but instead arrested by 24 hours in S/G2M (control, 54.3% ± 6.7% in S/G2M, 10Gy irradiated, 81.2 ± 5.37% mean±SEM, n=3, p=0.03 ). Similar results were obtained with cyclin D2 MM cells (control 53.2 ± 2.6% in S/G2M cf irradiated, 77.3 ± 5.1%, n=7 p<0.01). Consistent with failure to arrest in G1, both cyclin D1 and D2 MM cells showed no change in pRb phosphorylation but p21 levels increased following IR at 24 hours. Thus MM cells over-expressing cyclin D1 do not arrest in G1/S despite the rapid decrease in D1 protein, in contrast to published data on non-MM cells. We confirmed that D1 HMCL are capable of arresting at G1/S by treating cells with the selective CDK4/6 inhibitor PD0332991. 24 hours incubation with PD0332991 at 0.5 µM led to hypophosphorylation of Rb and arrest at G1/S. We next investigated the effect of irradiation on cyclin D1 bound in complexes with CDK4/6. Immunoprecipitation of CDK4 or CDK6 complexes and IB for cyclin D1 in KMS12BM showed rapid loss of cyclin D1 (6 hours) bound to CDK4/6. Finally we assessed the sensitivity of HMCL to IR and found variability between cell lines, but no overall difference in sensitivity between cyclin D1 and D2 expressing cell lines, assessed as viable cell number, or % apoptosis. Primary CD138+ MM cells over-expressing cyclin D1 or D2 also showed similar levels of cell death following IR (viable cell number, as % of un-irradiated control post 10Gy 62.10% ± 5.81 vs 54.45% ± 8.74, mean±SEM, D1 vs D2, at 48 hours, NS). Thus cyclin D type did not influence sensitivity to IR in HMCL or primary MM cells despite divergent responses in cyclin D levels Conclusions: Cyclin D1, bound to CDK4/6, is rapidly downregulated in D1 MM cells in response to DNA damage caused by IR, while cyclin D2 in D2 MM is not altered. Unlike non-MM cells, this is not associated with hypophosphorylation of Rb or G1 arrest. Our data suggest that, in MM tumours harbouring t(11;14), constitutive cyclin D1 expression from strong IgH enhancer elements is sufficient to maintain a critical level of CDK4/6 activity, despite overall reduction in levels following IR. Our data indicate that tumours over-expressing cyclins D1 or D2 do not differ substantially in the cell cycle response to DNA damage, hence such responses are unlikely to explain the difference in clinical outcome. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document