scholarly journals Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenal and Katononic Acid Isolated from Nuxia oppositifolia

Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 61 ◽  
Author(s):  
Ali S. Alqahtani ◽  
Syed Hidayathulla ◽  
Md Tabish Rehman ◽  
Ali A. ElGamal ◽  
Shaza Al-Massarani ◽  
...  

Nuxia oppositifolia is traditionally used in diabetes treatment in many Arabian countries; however, scientific evidence is lacking. Hence, the present study explored the antidiabetic and antioxidant activities of the plant extracts and their purified compounds. The methanolic crude extract of N. oppositifolia was partitioned using a two-solvent system. The n-hexane fraction was purified by silica gel column chromatography to yield several compounds including katononic acid and 3-oxolupenal. Antidiabetic activities were assessed by α-amylase and α-glucosidase enzyme inhibition. Antioxidant capacities were examined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) scavenging assays. Further, the interaction between enzymes (α-amylase and α-glucosidase) and ligands (3-oxolupenal and katononic acid) was followed by fluorescence quenching and molecular docking studies. 3-oxolupenal and katononic acid showed IC50 values of 46.2 μg/mL (101.6 µM) and 52.4 μg/mL (119.3 µM), respectively against the amylase inhibition. 3-oxolupenal (62.3 µg/mL or 141.9 μM) exhibited more potent inhibition against α-glucosidases compared to katononic acid (88.6 µg/mL or 194.8 μM). In terms of antioxidant activity, the relatively polar crude extract and n-butanol fraction showed the greatest DPPH and ABTS scavenging activity. However, the antioxidant activities of the purified compounds were in the low to moderate range. Molecular docking studies confirmed that 3-oxolupenal and katononic acid interacted strongly with the active site residues of both α-amylase and α-glucosidase. Fluorescence quenching results also suggest that 3-oxolupenal and katononic acid have a good affinity towards both α-amylase and α-glucosidase enzymes. This study provides preliminary data for the plant’s use in the treatment of type 2 diabetes mellitus.

Author(s):  
Vivek B. Panchabhai ◽  
Santosh R. Butle ◽  
Parag G. Ingole

We report a novel scaffold of N-substituted 2-phenylpyrido(2,3-d)pyrimidine derivatives with potent antibacterial activity by targeting this biotin carboxylase enzyme. The series of eighteen N-substituted 2-phenylpyrido(2,3-d)pyrimidine derivatives were synthesized, characterized and further molecular docking studied to determine the mode of binding and energy changes with the crystal structure of biotin carboxylase (PDB ID: 2V58) was employed as the receptor with compounds 6a-r as ligands. The results obtained from the simulation were obtained in the form of dock score; these values represent the minimum energies. Compounds 6d, 6l, 6n, 6o, 6r and 6i showed formation of hydrogen bonds with the active site residues and van Der Walls interactions with the biotin carboxylase enzyme in their molecular docking studies. This compound can be studied further and developed into a potential antibacterial lead molecule.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Hanif ◽  
Khurram Shoaib ◽  
Muhammad Saleem ◽  
Nasim Hasan Rama ◽  
Sumera Zaib ◽  
...  

A series of eighteen 1,3,4-oxadiazole derivatives have been synthesized by treating aromatic acid hydrazides with carbon disulfide in ethanolic potassium hydroxide yielding potassium salts of 1,3,4-oxadiazoles. Upon neutralization with 1 N hydrochloric acid yielded crude crystals of 1,3,4-oxadiazoles, which were purified by recrystallization in boiling methanol. The synthesized 1,3,4-oxadiazoles derivatives were evaluated in vitro for their urease inhibitory activities, most of the investigated compounds were potent inhibitors of Jack bean urease. The molecular docking studies were performed by docking them into the crystal structure of Jack bean urease to observe the mode of interaction of synthesized compounds. The synthesized compounds were also tested for antibacterial and antioxidant activities and some derivatives exhibited very promising results.


2015 ◽  
Vol 24 (12) ◽  
pp. 4181-4190 ◽  
Author(s):  
M. Govindhan ◽  
K. Subramanian ◽  
K. Chennakesava Rao ◽  
K. Easwaramoorthi ◽  
P. Senthilkumar ◽  
...  

2021 ◽  
Author(s):  
Inana F. Araújo ◽  
Victor Hugo Marinho ◽  
Iracirema S Sena ◽  
Jhone Curti ◽  
Ryan S. Ramos ◽  
...  

Abstract This work showed the crude extract of the endophytic fungus Aspergillus sp, isolated from the almonds of Bertholletia excelsa Humn & Bonlp collected in the Brazilian Amazon, oviposition deterrent, and larvicidal activity of against Aedes aegypti. In the oviposition deterrence test was observed that females able to lay eggs preferred the control oviposition sites (46.6%), suggesting the extract also could repel the oviposition. Futhermore, the extract showed larvicidal activity with LC50 26.86 µg/mL at 24 hours and 18.75 µg/mL at 48 hours. Molecular docking studies were carried out to elucidate the mechanism of action of the compounds identified against the enzyme acetylcholinesterase. The compound Aspergillol B was a potent larvicide with potential for inhibition for the acetylcholinesterase enzyme (-7.74 Kcal/mol). These unprecedented results reported indicate that the secondary metabolites obtained from crude extract of Aspergillus sp. present useful biological potential against vectors of public health importance and antibiotic-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document