scholarly journals Ethylene: A Master Regulator of Salinity Stress Tolerance in Plants

Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 959 ◽  
Author(s):  
Riyazuddin Riyazuddin ◽  
Radhika Verma ◽  
Kalpita Singh ◽  
Nisha Nisha ◽  
Monika Keisham ◽  
...  

Salinity stress is one of the major threats to agricultural productivity across the globe. Research in the past three decades, therefore, has focused on analyzing the effects of salinity stress on the plants. Evidence gathered over the years supports the role of ethylene as a key regulator of salinity stress tolerance in plants. This gaseous plant hormone regulates many vital cellular processes starting from seed germination to photosynthesis for maintaining the plants’ growth and yield under salinity stress. Ethylene modulates salinity stress responses largely via maintaining the homeostasis of Na+/K+, nutrients, and reactive oxygen species (ROS) by inducing antioxidant defense in addition to elevating the assimilation of nitrates and sulfates. Moreover, a cross-talk of ethylene signaling with other phytohormones has also been observed, which collectively regulate the salinity stress responses in plants. The present review provides a comprehensive update on the prospects of ethylene signaling and its cross-talk with other phytohormones to regulate salinity stress tolerance in plants.

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ian W Dawes ◽  
Gabriel G Perrone

ABSTRACT There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing—dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.


Author(s):  
Nishat Passricha ◽  
Shabnam K. Saifi ◽  
Sarvajeet Singh Gill ◽  
Renu Tuteja ◽  
Narendra Tuteja

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.


Sugar Tech ◽  
2010 ◽  
Vol 12 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Priyanka Saxena ◽  
R. P. Srivastava ◽  
M. L. Sharma

Sign in / Sign up

Export Citation Format

Share Document