scholarly journals Biogenesis of Mitochondrial Metabolite Carriers

Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1008 ◽  
Author(s):  
Patrick Horten ◽  
Lilia Colina-Tenorio ◽  
Heike Rampelt

Metabolite carriers of the mitochondrial inner membrane are crucial for cellular physiology since mitochondria contribute essential metabolic reactions and synthesize the majority of the cellular ATP. Like almost all mitochondrial proteins, carriers have to be imported into mitochondria from the cytosol. Carrier precursors utilize a specialized translocation pathway dedicated to the biogenesis of carriers and related proteins, the carrier translocase of the inner membrane (TIM22) pathway. After recognition and import through the mitochondrial outer membrane via the translocase of the outer membrane (TOM) complex, carrier precursors are ushered through the intermembrane space by hexameric TIM chaperones and ultimately integrated into the inner membrane by the TIM22 carrier translocase. Recent advances have shed light on the mechanisms of TOM translocase and TIM chaperone function, uncovered an unexpected versatility of the machineries, and revealed novel components and functional crosstalk of the human TIM22 translocase.

2003 ◽  
Vol 23 (21) ◽  
pp. 7818-7828 ◽  
Author(s):  
Ann E. Frazier ◽  
Agnieszka Chacinska ◽  
Kaye N. Truscott ◽  
Bernard Guiard ◽  
Nikolaus Pfanner ◽  
...  

ABSTRACT The mitochondrial inner membrane contains numerous multispanning integral proteins. The precursors of these hydrophobic proteins are synthesized in the cytosol and therefore have to cross the mitochondrial outer membrane and intermembrane space to reach the inner membrane. While the import pathways of noncleavable multispanning proteins, such as the metabolite carriers, have been characterized in detail by the generation of translocation intermediates, little is known about the mechanism by which cleavable preproteins of multispanning proteins, such as Oxa1, are transferred from the outer membrane to the inner membrane. We have identified a translocation intermediate of the Oxa1 preprotein in the translocase of the outer membrane (TOM) and found that there are differences from the import mechanisms of carrier proteins. The intermembrane space domain of the receptor Tom22 supports the stabilization of the Oxa1 intermediate. Transfer of the Oxa1 preprotein to the inner membrane is not affected by inactivation of the soluble TIM complexes. Both the inner membrane potential and matrix heat shock protein 70 are essential to release the preprotein from the TOM complex, suggesting a close functional cooperation of the TOM complex and the presequence translocase of the inner membrane. We conclude that mitochondria employ different mechanisms for translocation of multispanning proteins across the aqueous intermembrane space.


2017 ◽  
Vol 217 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Xi Wu ◽  
Lanlan Li ◽  
Hui Jiang

Mitochondria are double-membraned organelles playing essential metabolic and signaling functions. The mitochondrial proteome is under surveillance by two proteolysis systems: the ubiquitin–proteasome system degrades mitochondrial outer-membrane (MOM) proteins, and the AAA proteases maintain the proteostasis of intramitochondrial compartments. We previously identified a Doa1–Cdc48-Ufd1-Npl4 complex that retrogradely translocates ubiquitinated MOM proteins to the cytoplasm for degradation. In this study, we report the unexpected identification of MOM proteins whose degradation requires the Yme1-Mgr1-Mgr3 i-AAA protease complex in mitochondrial inner membrane. Through immunoprecipitation and in vivo site-specific photo–cross-linking experiments, we show that both Yme1 adapters Mgr1 and Mgr3 recognize the intermembrane space (IMS) domains of the MOM substrates and facilitate their recruitment to Yme1 for proteolysis. We also provide evidence that the cytoplasmic domain of substrate can be dislocated into IMS by the ATPase activity of Yme1. Our findings indicate a proteolysis pathway monitoring MOM proteins from the IMS side and suggest that the MOM proteome is surveilled by mitochondrial and cytoplasmic quality control machineries in parallel.


2012 ◽  
Vol 23 (20) ◽  
pp. 3948-3956 ◽  
Author(s):  
Maria Bohnert ◽  
Lena-Sophie Wenz ◽  
Ralf M. Zerbes ◽  
Susanne E. Horvath ◽  
David A. Stroud ◽  
...  

Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport–associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of β-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import β-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of β-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane β-barrel proteins.


1996 ◽  
Vol 16 (8) ◽  
pp. 4035-4042 ◽  
Author(s):  
D A Court ◽  
F E Nargang ◽  
H Steiner ◽  
R S Hodges ◽  
W Neupert ◽  
...  

Tom22 is an essential component of the protein translocation complex (Tom complex) of the mitochondrial outer membrane. The N-terminal domain of Tom22 functions as a preprotein receptor in cooperation with Tom20. The role of the C-terminal domain of Tom22, which is exposed to the intermembrane space (IMS), in its own assembly into the Tom complex and in the import of other preproteins was investigated. The C-terminal domain of Tom22 is not essential for the targeting and assembly of this protein, as constructs lacking part or all of the IMS domain became imported into mitochondria and assembled into the Tom complex. Mutant strains of Neurospora expressing the truncated Tom22 proteins were generated by a novel procedure. These mutants displayed wild-type growth rates, in contrast to cells lacking Tom22, which are not viable. The import of proteins into the outer membrane and the IMS of isolated mutant mitochondria was not affected. Some but not all preproteins destined for the matrix and inner membrane were imported less efficiently. The reduced import was not due to impaired interaction of presequences with their specific binding site on the trans side of the outer membrane. Rather, the IMS domain of Tom22 appears to slightly enhance the efficiency of the transfer of these preproteins to the import machinery of the inner membrane.


1992 ◽  
Vol 282 (3) ◽  
pp. 909-914 ◽  
Author(s):  
K Kashfi ◽  
G A Cook

Proteolysis of intact mitochondria by Nagarse (subtilisin BPN') and papain resulted in limited loss of activity of the outer-membrane carnitine palmitoyltransferase, but much greater loss of sensitivity to inhibition by malonyl-CoA. In contrast with a previous report [Murthy & Pande (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 378-382], we found that trypsin had no effect on malonyl-CoA sensitivity. Even when 80% of activity was destroyed by trypsin, there was no difference in the malonyl-CoA sensitivity of the enzyme remaining. Trypsin caused release of the intermembrane-space enzyme adenylate kinase, indicating loss of integrity of the mitochondrial outer membrane, whereas Nagarse and papain caused no release of that enzyme. Citrate synthase was not released by any of the three proteinases, indicating no damage to the mitochondrial inner membrane. When we examined the effects of proteolysis on the inhibition of carnitine palmitoyltransferase by a wide variety of inhibitors having different mechanisms of inhibition, we found differential proteolytic effects that were specific for those inhibitors (malonyl-CoA and hydroxyphenylglyoxylate) that have their inhibitory potencies diminished by changes in physiological state. Both of those inhibitors protected carnitine palmitoyltransferase from the effects of proteolysis, but did not inhibit the proteinases directly. Inhibition by two other inhibitors (DL-2-bromopalmitoyl-CoA and N-benzyladriamycin 14-valerate) was not altered by proteinase treatment, even when most of the enzyme activity had been destroyed. Inhibition by glyburide, which is minimally affected by physiological state, was affected only to a slight extent at the highest concentration of trypsin tested. Proteolysis by Nagarse appeared to produce loss of co-operativity in malonyl-CoA inhibition. The effects of proteolysis are discussed and compared with changes in Ki occurring with changing physiological states.


2000 ◽  
Vol 150 (6) ◽  
pp. 1271-1282 ◽  
Author(s):  
Alison J. Davis ◽  
Naresh B. Sepuri ◽  
Jason Holder ◽  
Arthur E. Johnson ◽  
Robert E. Jensen

Tim23p (translocase of the inner membrane) is an essential import component located in the mitochondrial inner membrane. To determine how the Tim23 protein itself is transported into mitochondria, we used chemical cross-linking to identify proteins adjacent to Tim23p during its biogenesis. In the absence of an inner membrane potential, Tim23p is translocated across the mitochondrial outer membrane, but not inserted into the inner membrane. At this intermediate stage, we find that Tim23p forms cross-linked products with two distinct protein complexes of the intermembrane space, Tim8p–Tim13p and Tim9p–Tim10p. Tim9p and Tim10p cross-link to the COOH-terminal domain of the Tim23 protein, which carries all of the targeting signals for Tim23p. Therefore, our results suggest that the Tim9p–Tim10p complex plays a key role in Tim23p import. In contrast, Tim8p and Tim13p cross-link to the hydrophilic NH2-terminal segment of Tim23p, which does not carry essential import information and, thus, the role of Tim8p–Tim13p is unclear. Tim23p contains two matrix-facing, positively charged loops that are essential for its insertion into the inner membrane. The positive charges are not required for interaction with the Tim9p–Tim10p complex, but are essential for cross-linking of Tim23p to components of the inner membrane insertion machinery, including Tim54p, Tim22p, and Tim12p.


2003 ◽  
Vol 14 (6) ◽  
pp. 2342-2356 ◽  
Author(s):  
Hiromi Sesaki ◽  
Sheryl M. Southard ◽  
Michael P. Yaffe ◽  
Robert E. Jensen

In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.


2018 ◽  
Author(s):  
Joel S Riley ◽  
Giovanni Quarato ◽  
Jonathan Lopez ◽  
Jim O’Prey ◽  
Matthew Pearson ◽  
...  

AbstractDuring apoptosis, pro-apoptotic BAX and BAK are activated, causing mitochondrial outer membrane permeabilisation (MOMP), caspase activation and cell death. However, even in the absence of caspase activity, cells usually die following MOMP. Such caspase-independent cell death is accompanied by inflammation that requires mitochondrial DNA (mtDNA) activation of cGAS-STING signaling. Because the mitochondrial inner membrane is thought to remain intact during apoptosis, we sought to address how matrix mtDNA could activate the cytosolic cGAS-STING signaling pathway. Strikingly, using super-resolution imaging, we show that mtDNA is efficiently released from mitochondria following MOMP. In a temporal manner, we find that following MOMP, BAX/BAK-mediated mitochondrial outer membrane pores gradually widen over time. This allows extrusion of the mitochondrial inner membrane into the cytosol whereupon it permeablises allowing mtDNA release. Our data demonstrate that mitochondrial inner membrane permeabilisation can occur during cell death in a BAX/BAK-dependent manner. Importantly, by enabling the cytosolic release of mtDNA, inner membrane permeabilisation underpins the immunogenic effects of caspase-independent cell death.


2018 ◽  
Author(s):  
Junhui Tang ◽  
Kuan Zhang ◽  
Jun Dong ◽  
Chaojun Yan ◽  
Shi Chen ◽  
...  

ABSTRACTMitochondrial cristae are critical for efficient oxidative phosphorylation, however, how cristae architecture is precisely organized remains largely unknown. Here, we discovered that Mic19, a core component of MICOS (mitochondrial contact site and cristae organizing system) complex, can be cleaved at N-terminal by mitochondrial protease OMA1. Mic19 directly interacts with mitochondrial outer-membrane protein Sam50 (the key subunit of SAM complex) and inner-membrane protein Mic60 (the key component of MICOS complex) to form Sam50-Mic19-Mic60 axis, which dominantly connects SAM and MICOS complexes to assemble MIB (mitochondrial intermembrane space bridging) supercomplex for mediating mitochondrial outer- and inner-membrane contact. OMA1-mediated Mic19 cleavage causes Sam50-Mic19-Mic60 axis disruption, which separates SAM and MICOS and leads to MIB disassembly. Disrupted Sam50-Mic19-Mic60 axis, even in the presence of SAM and MICOS complexes, causes the abnormal mitochondrial morphology, loss of mitochondrial cristae junctions, abnormal cristae distribution and reduced ATP production. Importantly, Sam50 displays punctate distribution at mitochondrial outer membrane, and acts as an anchoring point to guide the formation of mitochondrial cristae junctions. Therefore, we propose a model that Sam50-Mic19-Mic60 axis mediated SAM-MICOS complexes integration determines mitochondrial cristae architecture.


Sign in / Sign up

Export Citation Format

Share Document