scholarly journals The Role of Exosomes in Lysosomal Storage Disorders

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 576
Author(s):  
Adenrele M. Gleason ◽  
Elizabeth G. Woo ◽  
Cindy McKinney ◽  
Ellen Sidransky

Exosomes, small membrane-bound organelles formed from endosomal membranes, represent a heterogenous source of biological and pathological biomarkers capturing the metabolic status of a cell. Exosomal cargo, including lipids, proteins, mRNAs, and miRNAs, can either act as inter-cellular messengers or are shuttled for autophagic/lysosomal degradation. Most cell types in the central nervous system (CNS) release exosomes, which serve as long and short distance communicators between neurons, astrocytes, oligodendrocytes, and microglia. Lysosomal storage disorders are diseases characterized by the accumulation of partially or undigested cellular waste. The exosomal content in these diseases is intrinsic to each individual disorder. Emerging research indicates that lysosomal dysfunction enhances exocytosis, and hence, in lysosomal disorders, exosomal secretion may play a role in disease pathogenesis. Furthermore, the unique properties of exosomes and their ability to carry cargo between adjacent cells and organs, and across the blood–brain barrier, make them attractive candidates for use as therapeutic delivery vehicles. Thus, understanding exosomal content and function may have utility in the treatment of specific lysosomal storage disorders. Since lysosomal dysfunction and the deficiency of at least one lysosomal enzyme, glucocerebrosidase, is associated with the development of parkinsonism, the study and use of exosomes may contribute to an improved understanding of Parkinson disease, potentially leading to new therapeutics.

2018 ◽  
Vol 20 (1) ◽  
pp. 66 ◽  
Author(s):  
Martijn van der Lienden ◽  
Paulo Gaspar ◽  
Rolf Boot ◽  
Johannes Aerts ◽  
Marco van Eijk

Several diseases are caused by inherited defects in lysosomes, the so-called lysosomal storage disorders (LSDs). In some of these LSDs, tissue macrophages transform into prominent storage cells, as is the case in Gaucher disease. Here, macrophages become the characteristic Gaucher cells filled with lysosomes laden with glucosylceramide, because of their impaired enzymatic degradation. Biomarkers of Gaucher cells were actively searched, particularly after the development of costly therapies based on enzyme supplementation and substrate reduction. Proteins selectively expressed by storage macrophages and secreted into the circulation were identified, among which glycoprotein non-metastatic protein B (GPNMB). This review focusses on the emerging potential of GPNMB as a biomarker of stressed macrophages in LSDs as well as in acquired pathologies accompanied by an excessive lysosomal substrate load in macrophages.


2021 ◽  
Author(s):  
Mitchell J. Rechtzigel ◽  
Brandon L Meyerink ◽  
Hannah Leppert ◽  
Tyler B Johnson ◽  
Jacob T. Cain ◽  
...  

Batten disease is unique among lysosomal storage disorders for the early and profound manifestation in the central nervous system, but little is known regarding potential neuron-specific roles for the disease-associated proteins. We demonstrate substantial overlap in the protein interactomes of three transmembrane Batten proteins (CLN3, CLN6, and CLN8), and that their absence leads to synaptic depletion of key partners (i.e. SNAREs and tethers) and aberrant synaptic SNARE dynamics in vivo, demonstrating a novel shared etiology.


2021 ◽  
Author(s):  
Maurizio Pieroni ◽  
Federico Pieruzzi ◽  
Renzo Mignani ◽  
Francesca Graziani ◽  
Iacopo Olivotto ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria De Risi ◽  
Michele Tufano ◽  
Filomena Grazia Alvino ◽  
Maria Grazia Ferraro ◽  
Giulia Torromino ◽  
...  

AbstractLysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism.


2021 ◽  
Author(s):  
Neel S. Iyer ◽  
Alexis C. Gimovsky ◽  
Carlos R. Ferreira ◽  
Elizabeth J. Critchlow ◽  
Huda B. Al‐kouatly

Sign in / Sign up

Export Citation Format

Share Document