scholarly journals Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders

2012 ◽  
Vol 2 (3) ◽  
pp. 169-186 ◽  
Author(s):  
Silvia Muro
2008 ◽  
Vol 24 (3-4) ◽  
pp. E12 ◽  
Author(s):  
Gregory M. Enns ◽  
Stephen L. Huhn

✓ Most lysosomal storage disorders are characterized by progressive central nervous system impairment, with or without systemic involvement. Affected individuals have an array of symptoms related to brain dysfunction, the most devastating of which is neurodegeneration following a period of normal development. The blood–brain barrier has represented a significant impediment to developing therapeutic approaches to treat brain disease, but novel approaches—including enzyme replacement, small-molecule, gene, and cell-based therapies—have given children afflicted by these conditions and those who care for them hope for the future.


2021 ◽  
Author(s):  
Mitchell J. Rechtzigel ◽  
Brandon L Meyerink ◽  
Hannah Leppert ◽  
Tyler B Johnson ◽  
Jacob T. Cain ◽  
...  

Batten disease is unique among lysosomal storage disorders for the early and profound manifestation in the central nervous system, but little is known regarding potential neuron-specific roles for the disease-associated proteins. We demonstrate substantial overlap in the protein interactomes of three transmembrane Batten proteins (CLN3, CLN6, and CLN8), and that their absence leads to synaptic depletion of key partners (i.e. SNAREs and tethers) and aberrant synaptic SNARE dynamics in vivo, demonstrating a novel shared etiology.


2019 ◽  
Vol 25 (17) ◽  
pp. 1933-1950 ◽  
Author(s):  
Maria R. Gigliobianco ◽  
Piera Di Martino ◽  
Siyuan Deng ◽  
Cristina Casadidio ◽  
Roberta Censi

Lysosomal Storage Disorders (LSDs), also known as lysosomal diseases (LDs) are a group of serious genetic diseases characterized by not only the accumulation of non-catabolized compounds in the lysosomes due to the deficiency of specific enzymes which usually eliminate these compounds, but also by trafficking, calcium changes and acidification. LDs mainly affect the central nervous system (CNS), which is difficult to reach for drugs and biological molecules due to the presence of the blood-brain barrier (BBB). While some therapies have proven highly effective in treating peripheral disorders in LD patients, they fail to overcome the BBB. Researchers have developed many strategies to circumvent this problem, for example, by creating carriers for enzyme delivery, which improve the enzyme’s half-life and the overexpression of receptors and transporters in the luminal or abluminal membranes of the BBB. This review aims to successfully examine the strategies developed during the last decade for the treatment of LDs, which mainly affect the CNS. Among the LD treatments, enzyme-replacement therapy (ERT) and gene therapy have proven effective, while nanoparticle, fusion protein, and small molecule-based therapies seem to offer considerable promise to treat the CNS pathology. This work also analyzed the challenges of the study to design new drug delivery systems for the effective treatment of LDs. Polymeric nanoparticles and liposomes are explored from their technological point of view and for the most relevant preclinical studies showing that they are excellent choices to protect active molecules and transport them through the BBB to target specific brain substrates for the treatment of LDs.


Sign in / Sign up

Export Citation Format

Share Document