scholarly journals Detection of Cytopathic Effects Induced by Influenza, Parainfluenza, and Enterovirus Using Deep Convolution Neural Network

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Jen-Jee Chen ◽  
Po-Han Lin ◽  
Yi-Ying Lin ◽  
Kun-Yi Pu ◽  
Chu-Feng Wang ◽  
...  

The isolation of a virus using cell culture to observe its cytopathic effects (CPEs) is the main method for identifying the viruses in clinical specimens. However, the observation of CPEs requires experienced inspectors and excessive time to inspect the cell morphology changes. In this study, we utilized artificial intelligence (AI) to improve the efficiency of virus identification. After some comparisons, we used ResNet-50 as a backbone with single and multi-task learning models to perform deep learning on the CPEs induced by influenza, enterovirus, and parainfluenza. The accuracies of the single and multi-task learning models were 97.78% and 98.25%, respectively. In addition, the multi-task learning model increased the accuracy of the single model from 95.79% to 97.13% when only a few data of the CPEs induced by parainfluenza were provided. We modified both models by inserting a multiplexer and de-multiplexer layer, respectively, to increase the correct rates for known cell lines. In conclusion, we provide a deep learning structure with ResNet-50 and the multi-task learning model and show an excellent performance in identifying virus-induced CPEs.

2022 ◽  
Author(s):  
Maede Maftouni ◽  
Bo Shen ◽  
Andrew Chung Chee Law ◽  
Niloofar Ayoobi Yazdi ◽  
Zhenyu Kong

<p>The global extent of COVID-19 mutations and the consequent depletion of hospital resources highlighted the necessity of effective computer-assisted medical diagnosis. COVID-19 detection mediated by deep learning models can help diagnose this highly contagious disease and lower infectivity and mortality rates. Computed tomography (CT) is the preferred imaging modality for building automatic COVID-19 screening and diagnosis models. It is well-known that the training set size significantly impacts the performance and generalization of deep learning models. However, accessing a large dataset of CT scan images from an emerging disease like COVID-19 is challenging. Therefore, data efficiency becomes a significant factor in choosing a learning model. To this end, we present a multi-task learning approach, namely, a mask-guided attention (MGA) classifier, to improve the generalization and data efficiency of COVID-19 classification on lung CT scan images.</p><p>The novelty of this method is compensating for the scarcity of data by employing more supervision with lesion masks, increasing the sensitivity of the model to COVID-19 manifestations, and helping both generalization and classification performance. Our proposed model achieves better overall performance than the single-task baseline and state-of-the-art models, as measured by various popular metrics. In our experiment with different percentages of data from our curated dataset, the classification performance gain from this multi-task learning approach is more significant for the smaller training sizes. Furthermore, experimental results demonstrate that our method enhances the focus on the lesions, as witnessed by both</p><p>attention and attribution maps, resulting in a more interpretable model.</p>


2022 ◽  
Author(s):  
Maede Maftouni ◽  
Bo Shen ◽  
Andrew Chung Chee Law ◽  
Niloofar Ayoobi Yazdi ◽  
Zhenyu Kong

<p>The global extent of COVID-19 mutations and the consequent depletion of hospital resources highlighted the necessity of effective computer-assisted medical diagnosis. COVID-19 detection mediated by deep learning models can help diagnose this highly contagious disease and lower infectivity and mortality rates. Computed tomography (CT) is the preferred imaging modality for building automatic COVID-19 screening and diagnosis models. It is well-known that the training set size significantly impacts the performance and generalization of deep learning models. However, accessing a large dataset of CT scan images from an emerging disease like COVID-19 is challenging. Therefore, data efficiency becomes a significant factor in choosing a learning model. To this end, we present a multi-task learning approach, namely, a mask-guided attention (MGA) classifier, to improve the generalization and data efficiency of COVID-19 classification on lung CT scan images.</p><p>The novelty of this method is compensating for the scarcity of data by employing more supervision with lesion masks, increasing the sensitivity of the model to COVID-19 manifestations, and helping both generalization and classification performance. Our proposed model achieves better overall performance than the single-task baseline and state-of-the-art models, as measured by various popular metrics. In our experiment with different percentages of data from our curated dataset, the classification performance gain from this multi-task learning approach is more significant for the smaller training sizes. Furthermore, experimental results demonstrate that our method enhances the focus on the lesions, as witnessed by both</p><p>attention and attribution maps, resulting in a more interpretable model.</p>


Author(s):  
Hsu-Heng Yen ◽  
Ping-Yu Wu ◽  
Pei-Yuan Su ◽  
Chia-Wei Yang ◽  
Yang-Yuan Chen ◽  
...  

Abstract Purpose Management of peptic ulcer bleeding is clinically challenging. Accurate characterization of the bleeding during endoscopy is key for endoscopic therapy. This study aimed to assess whether a deep learning model can aid in the classification of bleeding peptic ulcer disease. Methods Endoscopic still images of patients (n = 1694) with peptic ulcer bleeding for the last 5 years were retrieved and reviewed. Overall, 2289 images were collected for deep learning model training, and 449 images were validated for the performance test. Two expert endoscopists classified the images into different classes based on their appearance. Four deep learning models, including Mobile Net V2, VGG16, Inception V4, and ResNet50, were proposed and pre-trained by ImageNet with the established convolutional neural network algorithm. A comparison of the endoscopists and trained deep learning model was performed to evaluate the model’s performance on a dataset of 449 testing images. Results The results first presented the performance comparisons of four deep learning models. The Mobile Net V2 presented the optimal performance of the proposal models. The Mobile Net V2 was chosen for further comparing the performance with the diagnostic results obtained by one senior and one novice endoscopists. The sensitivity and specificity were acceptable for the prediction of “normal” lesions in both 3-class and 4-class classifications. For the 3-class category, the sensitivity and specificity were 94.83% and 92.36%, respectively. For the 4-class category, the sensitivity and specificity were 95.40% and 92.70%, respectively. The interobserver agreement of the testing dataset of the model was moderate to substantial with the senior endoscopist. The accuracy of the determination of endoscopic therapy required and high-risk endoscopic therapy of the deep learning model was higher than that of the novice endoscopist. Conclusions In this study, the deep learning model performed better than inexperienced endoscopists. Further improvement of the model may aid in clinical decision-making during clinical practice, especially for trainee endoscopist.


2021 ◽  
Vol 27 ◽  
Author(s):  
Qi Zhou ◽  
Wenjie Zhu ◽  
Fuchen Li ◽  
Mingqing Yuan ◽  
Linfeng Zheng ◽  
...  

Objective: To verify the ability of the deep learning model in identifying five subtypes and normal images in noncontrast enhancement CT of intracranial hemorrhage. Method: A total of 351 patients (39 patients in the normal group, 312 patients in the intracranial hemorrhage group) performed with intracranial hemorrhage noncontrast enhanced CT were selected, with 2768 images in total (514 images for the normal group, 398 images for the epidural hemorrhage group, 501 images for the subdural hemorrhage group, 497 images for the intraventricular hemorrhage group, 415 images for the cerebral parenchymal hemorrhage group, and 443 images for the subarachnoid hemorrhage group). Based on the diagnostic reports of two radiologists with more than 10 years of experience, the ResNet-18 and DenseNet-121 deep learning models were selected. Transfer learning was used. 80% of the data was used for training models, 10% was used for validating model performance against overfitting, and the last 10% was used for the final evaluation of the model. Assessment indicators included accuracy, sensitivity, specificity, and AUC values. Results: The overall accuracy of ResNet-18 and DenseNet-121 models were 89.64% and 82.5%, respectively. The sensitivity and specificity of identifying five subtypes and normal images were above 0.80. The sensitivity of DenseNet-121 model to recognize intraventricular hemorrhage and cerebral parenchymal hemorrhage was lower than 0.80, 0.73, and 0.76 respectively. The AUC values of the two deep learning models were above 0.9. Conclusion: The deep learning model can accurately identify the five subtypes of intracranial hemorrhage and normal images, and it can be used as a new tool for clinical diagnosis in the future.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2021 ◽  
Author(s):  
Tuomo Hartonen ◽  
Teemu Kivioja ◽  
Jussi Taipale

Deep learning models have in recent years gained success in various tasks related to understanding information coded in the DNA sequence. Rapidly developing genome-wide measurement technologies provide large quantities of data ideally suited for modeling using deep learning or other powerful machine learning approaches. Although offering state-of-the art predictive performance, the predictions made by deep learning models can be difficult to understand. In virtually all biological research, the understanding of how a predictive model works is as important as the raw predictive performance. Thus interpretation of deep learning models is an emerging hot topic especially in context of biological research. Here we describe plotMI, a mutual information based model interpretation strategy that can intuitively visualize positional preferences and pairwise interactions learned by any machine learning model trained on sequence data with a defined alphabet as input. PlotMI is freely available at https://github.com/hartonen/plotMI.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Yannan Yu ◽  
Soren Christensen ◽  
Yuan Xie ◽  
Enhao Gong ◽  
Maarten G Lansberg ◽  
...  

Objective: Ischemic core prediction from CT perfusion (CTP) remains inaccurate compared with gold standard diffusion-weighted imaging (DWI). We evaluated if a deep learning model to predict the DWI lesion from MR perfusion (MRP) could facilitate ischemic core prediction on CTP. Method: Using the multi-center CRISP cohort of acute ischemic stroke patient with CTP before thrombectomy, we included patients with major reperfusion (TICI score≥2b), adequate image quality, and follow-up MRI at 3-7 days. Perfusion parameters including Tmax, mean transient time, cerebral blood flow (CBF), and cerebral blood volume were reconstructed by RAPID software. Core lab experts outlined the stroke lesion on the follow-up MRI. A previously trained MRI model in a separate group of patients was used as a starting point, which used MRP parameters as input and RAPID ischemic core on DWI as ground truth. We fine-tuned this model, using CTP parameters as input, and follow-up MRI as ground truth. Another model was also trained from scratch with only CTP data. 5-fold cross validation was used. Performance of the models was compared with ischemic core (rCBF≤30%) from RAPID software to identify the presence of a large infarct (volume>70 or >100ml). Results: 94 patients in the CRISP trial met the inclusion criteria (mean age 67±15 years, 52% male, median baseline NIHSS 18, median 90-day mRS 2). Without fine-tuning, the MRI model had an agreement of 73% in infarct >70ml, and 69% in >100ml; the MRI model fine-tuned on CT improved the agreement to 77% and 73%; The CT model trained from scratch had agreements of 73% and 71%; All of the deep learning models outperformed the rCBF segmentation from RAPID, which had agreements of 51% and 64%. See Table and figure. Conclusions: It is feasible to apply MRP-based deep learning model to CT. Fine-tuning with CTP data further improves the predictions. All deep learning models predict the stroke lesion after major recanalization better than thresholding approaches based on rCBF.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_4) ◽  
Author(s):  
ChienYu Chi ◽  
Yen-Pin Chen ◽  
Adrian Winkler ◽  
Kuan-Chun Fu ◽  
Fie Xu ◽  
...  

Introduction: Predicting rare catastrophic events is challenging due to lack of targets. Here we employed a multi-task learning method and demonstrated that substantial gains in accuracy and generalizability was achieved by sharing representations between related tasks Methods: Starting from Taiwan National Health Insurance Research Database, we selected adult people (>20 year) experienced in-hospital cardiac arrest but not out-of-hospital cardiac arrest during 8 years (2003-2010), and built a dataset using de-identified claims of Emergency Department (ED) and hospitalization. Final dataset had 169,287 patients, randomly split into 3 sections, train 70%, validation 15%, and test 15%.Two outcomes, 30-day readmission and 30-day mortality are chosen. We constructed the deep learning system in two steps. We first used a taxonomy mapping system Text2Node to generate a distributed representation for each concept. We then applied a multilevel hierarchical model based on long short-term memory (LSTM) architecture. Multi-task models used gradient similarity to prioritize the desired task over auxiliary tasks. Single-task models were trained for each desired task. All models share the same architecture and are trained with the same input data Results: Each model was optimized to maximize AUROC on the validation set with the final metrics calculated on the held-out test set. We demonstrated multi-task deep learning models outperform single task deep learning models on both tasks. While readmission had roughly 30% positives and showed miniscule improvements, the mortality task saw more improvement between models. We hypothesize that this is a result of the data imbalance, mortality occurred roughly 5% positive; the auxiliary tasks help the model interpret the data and generalize better. Conclusion: Multi-task deep learning models outperform single task deep learning models in predicting 30-day readmission and mortality in in-hospital cardiac arrest patients.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6077
Author(s):  
Gerelmaa Byambatsogt ◽  
Lodoiravsal Choimaa ◽  
Gou Koutaki

In recent years, many researchers have shown increasing interest in music information retrieval (MIR) applications, with automatic chord recognition being one of the popular tasks. Many studies have achieved/demonstrated considerable improvement using deep learning based models in automatic chord recognition problems. However, most of the existing models have focused on simple chord recognition, which classifies the root note with the major, minor, and seventh chords. Furthermore, in learning-based recognition, it is critical to collect high-quality and large amounts of training data to achieve the desired performance. In this paper, we present a multi-task learning (MTL) model for a guitar chord recognition task, where the model is trained using a relatively large-vocabulary guitar chord dataset. To solve data scarcity issues, a physical data augmentation method that directly records the chord dataset from a robotic performer is employed. Deep learning based MTL is proposed to improve the performance of automatic chord recognition with the proposed physical data augmentation dataset. The proposed MTL model is compared with four baseline models and its corresponding single-task learning model using two types of datasets, including a human dataset and a human combined with the augmented dataset. The proposed methods outperform the baseline models, and the results show that most scores of the proposed multi-task learning model are better than those of the corresponding single-task learning model. The experimental results demonstrate that physical data augmentation is an effective method for increasing the dataset size for guitar chord recognition tasks.


2019 ◽  
Author(s):  
Anshul Thakur ◽  
Michael Goldbaum ◽  
Siamak Yousefi

AbstractPurposeTo assess the accuracy of deep learning models to predict glaucoma development from fundus photographs several years prior to disease onset.DesignA deep learning model for prediction of glaucomatous optic neuropathy or visual field abnormality from color fundus photographs.ParticipantsWe retrospectively included 66,721 fundus photographs from 3,272 eyes of 1,636 subjects to develop deep leaning models.MethodFundus photographs and visual fields were carefully examined by two independent readers from the optic disc and visual field reading centers of the ocular hypertension treatment study (OHTS). When an abnormality was detected by the readers, subject was recalled for re-testing to confirm the abnormality and further confirmation by an endpoint committee. Using OHTS data, deep learning models were trained and tested using 85% of the fundus photographs and further validated (re-tested) on the remaining (held-out) 15% of the fundus photographs.Main Outcome MeasuresAccuracy and area under the receiver-operating characteristic curve (AUC).ResultsThe AUC of the deep learning model in predicting glaucoma development 4-7 years prior to disease onset was 0.77 (95% confidence interval 0.75, 0.79). The accuracy of the model in predicting glaucoma development about 1-3 years prior to disease onset was 0.88 (0.86, 0.91). The accuracy of the model in detecting glaucoma after onset was 0.95 (0.94, 0.96).ConclusionsDeep learning models can predict glaucoma development prior to disease onset with reasonable accuracy. Eyes with visual field abnormality but not glaucomatous optic neuropathy had a higher tendency to be missed by deep learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document