scholarly journals HDL Is Not Dead Yet

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 128
Author(s):  
Shuhui Wang Lorkowski ◽  
Jonathan D. Smith

High-density lipoprotein cholesterol (HDL-C) levels are inversely correlated with coronary heart disease (CHD) in multiple epidemiological studies, but whether HDL is causal or merely associated with CHD is unclear. Recent trials for HDL-raising drugs were either not effective in reducing CHD events or, if beneficial in reducing CHD events, were not conclusive as the findings could be attributed to the drugs’ LDL-reducing activity. Furthermore, the first large Mendelian randomization study did not causally relate HDL-C levels to decreased CHD. Thus, the hypothesis that HDL is protective against CHD has been rightfully challenged. However, subsequent Mendelian randomization studies found HDL characteristics that are causally related to decreased CHD. Many aspects of HDL structure and function, especially in reverse cholesterol transport, may be better indicators of HDL’s protective activity than simply measuring HDL-C. Cholesterol efflux capacity is associated with lower levels of prevalent and incident CHD, even after adjustment for HDL-C and apolipoprotein A-1 levels. Also, subjects with very high levels of HDL-C, including those with rare mutations that disrupt hepatic HDL uptake and reverse cholesterol transport, may be at higher risk for CHD than those with moderate levels. We describe here several cell-based and cell-free in vitro assays of HDL structure and function that may be used in clinical studies to determine which of HDL’s functions are best associated with protection against CHD. We conclude that the HDL hypothesis may need revision based on studies of HDL structure and function, but that the HDL hypothesis is not dead yet.

2018 ◽  
Vol 10 (2) ◽  
pp. 84-103
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: The strong inverse association of plasma levels of high-density lipoprotein cholesterol (HDL-C) with coronary heart disease (CHD) found in human epidemiological studies led to the development of the ‘HDL-C hypothesis’, which posits that intervention to raise HDL-C will result in reduced risk of CHD. However, recent evidence has raised doubts about the hypotheses that elevating HDL-C is necessarily therapeutic. Genetic variations that associate with altered HDL-C do not strongly associate with altered cardiovascular disease risk.CONTENT: HDL-mediated cholesterol efflux from macrophage foam cells or measurements of the flux of cholesterol from macrophages to the liver and feces seem to correlate better with atherosclerotic burden than with HDL-C levels. Thus, it may be time to modify the HDL-C hypothesis to the ‘HDL flux hypothesis’, where intervention to promote cholesterol efflux and reverse cholesterol transport will reduce CHD risk, regardless of whether it affects plasma HDL-C levels. A deeper understanding of the complex biology of HDL metabolism and its relationship to reverse cholesterol transport and atherothromobotic events is urgently needed. This might lead to biomarkers of HDL flux and functionality that are more informative than simple measurements of HDL-C levels.SUMMARY: It is now clear from recent clinical trial and genetic studies that some approaches to raising HDL-C levels may have no effect on CHD. This suggests the need to evaluate HDL-C-raising therapies in different clinical populations, as well as therapies targeted toward HDL flux and function rather than simply HDL-C elevation. Perhaps moving from a focus on the HDL-C hypothesis to a focus on the HDL flux hypothesis will permit a biologically based reassessment of the optimal therapeutic approach to targeting HDL for reduction in cardiovascular risk.KEYWORDS: reverse cholesterol transport, cholesterol efflux capacity, HDL dysfunction, HDL particle size, HDL lipidomics, HDL proteomics


1994 ◽  
Vol 302 (1) ◽  
pp. 207-213 ◽  
Author(s):  
M A Mindham ◽  
P A Mayes

1. A new method to isolate and perfuse the rat spleen and liver simultaneously with a common blood perfusate at high haematocrit was developed. The spleen was pre-labelled with [3H]cholesterol, enabling reverse cholesterol transport from an extrahepatic tissue to the blood and thence to the liver and bile to be studied in a single preparation in vitro. 2. The presence of the liver significantly increased the release of [3H]cholesterol from the spleen by 15%, compared with experiments where the spleen was perfused alone. 3. There was a substantial release of [3H]cholesterol and cholesterol mass from the spleen to serum lipoproteins, the majority (80%) to high-density lipoprotein (HDL), in which cholesteryl ester accumulated. 4. The HDL subfractions HDL2 and HDL3 (d 1.085-1.250) were most important for removal of cholesterol from the spleen, whereas HDL1 and HDL2 (d 1.050-1.125) were important for delivery of cholesterol to the liver, a net uptake of cholesteryl ester occurring only from these fractions. 5. Approximately half of the [3H]cholesterol released by the spleen was recovered in erythrocytes. Also, in experiments utilizing a lipoprotein-free perfusate containing erythrocytes, a substantial quantity of [3H]cholesterol was transported and/or exchanged into the liver and bile, indicating that erythrocytes play an important role in the equilibration of unesterified cholesterol between the tissues.


2020 ◽  
Vol 27 (31) ◽  
pp. 5159-5174 ◽  
Author(s):  
Xinjie Lu

Background:Angiopoietin-Like Proteins (ANGPTLs) are structurally related to the angiopoietins. A total of eight ANGPTLs (from ANGPTL1 to ANGPTL8) have been identified so far. Most ANGPTLs possess multibiological functions on lipid metabolism, atherosclerosis, and cancer. Among them, ANGPTL3 has been shown to regulate the levels of Very Low-Density Lipoprotein (VLDL) made by the liver and play a crucial role in human lipoprotein metabolism.Method:A systematic appraisal of ANGPTLs was conducted, focusing on the main features of ANGPTL3 that has a significant role in atherosclerosis.Results:Angiopoietins including ANGPTL3 are vascular growth factors that are highly specific for endothelial cells, perform a variety of other regulatory activities to influence inflammation, and have been shown to possess both pro-atherosclerotic and atheroprotective effects.Conclusion:ANGPTL3 has been demonstrated as a promising target in the pharmacological management of atherosclerosis. However, many questions remain about its biological functions.


2019 ◽  
Vol 20 (10) ◽  
pp. 1029-1040 ◽  
Author(s):  
Xinjie Lu

Background:One of the important factors in Low-Density Lipoprotein (LDL) metabolism is the LDL receptor (LDLR) by its capacity to bind and subsequently clear cholesterol derived from LDL (LDL-C) in the circulation. Proprotein Convertase Subtilisin-like Kexin type 9 (PCSK9) is a newly discovered serine protease that destroys LDLR in the liver and thereby controls the levels of LDL in plasma. Inhibition of PCSK9-mediated degradation of LDLR has, therefore, become a novel target for lipid-lowering therapy.Methods:We review the current understanding of the structure and function of PCSK9 as well as its implications for the treatment of hyperlipidemia and atherosclerosis.Results:New treatments such as monoclonal antibodies against PCSK9 may be useful agents to lower plasma levels of LDL and hence prevent atherosclerosis.Conclusion:PCSK9's mechanism of action is not yet fully clarified. However, treatments that target PCSK9 have shown striking early efficacy and promise to improve the lives of countless patients with hyperlipidemia and atherosclerosis.


Metabolism ◽  
2004 ◽  
Vol 53 (7) ◽  
pp. 858-862 ◽  
Author(s):  
Águeda C.M Zaratin ◽  
Eder C.R Quintão ◽  
Andrei C Sposito ◽  
Valéria S Nunes ◽  
Ana Maria Lottenberg ◽  
...  

2001 ◽  
Vol 42 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Sylvie Braschi ◽  
Cynthia R. Coffill ◽  
Tracey A-M. Neville ◽  
Darren M. Hutt ◽  
Daniel L. Sparks

Sign in / Sign up

Export Citation Format

Share Document