scholarly journals Insights into Biomechanical and Proteomic Characteristics of Small Diameter Vascular Grafts Utilizing the Human Umbilical Artery

Biomedicines ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 280
Author(s):  
Panagiotis Mallis ◽  
Dimitrios P. Sokolis ◽  
Manousos Makridakis ◽  
Jerome Zoidakis ◽  
Athanasios D. Velentzas ◽  
...  

The gold standard vascular substitutes, used in cardiovascular surgery, are the Dacron or expanded polytetrafluoroethylene (ePTFE)-derived grafts. However, major adverse reactions accompany their use. For this purpose, decellularized human umbilical arteries (hUAs) may be proven as a significant source for the development of small diameter conduits. The aim of this study was the evaluation of a decellularization protocol in hUAs. To study the effect of the decellularization to the hUAs, histological analysis was performed. Then, native and decellularized hUAs were biochemically and biomechanically evaluated. Finally, broad proteomic analysis was applied. Histological analysis revealed the successful decellularization of the hUAs. Furthermore, a great amount of DNA was removed from the decellularized hUAs. Biomechanical analysis revealed statistically significant differences in longitudinal direction only in maximum stress (p < 0.013) and strain (p < 0.001). On the contrary, all parameters tested for circumferential direction exhibited significant differences (p < 0.05). Proteomic analysis showed the preservation of the extracellular matrix and cytoskeletal proteins in both groups. Proteomic data are available via ProteomeXchange with identifier PXD020187. The above results indicated that hUAs were efficiently decellularized. The tissue function properties of these conduits were well retained, making them ideal candidates for the development of small diameter vascular grafts.

2021 ◽  
Vol 8 (9) ◽  
pp. 118
Author(s):  
Panagiotis Mallis ◽  
Dimitrios P. Sokolis ◽  
Michalis Katsimpoulas ◽  
Alkiviadis Kostakis ◽  
Catherine Stavropoulos-Giokas ◽  
...  

Background: The development of functional bioengineered small-diameter vascular grafts (SDVGs), represents a major challenge of tissue engineering. This study aimed to evaluate the repopulation efficacy of biological vessels, utilizing the cord blood platelet lysate (CBPL). Methods: Human umbilical arteries (hUAs, n = 10) were submitted to decellularization. Then, an evaluation of decellularized hUAs, involving histological, biochemical and biomechanical analysis, was performed. Wharton’s Jelly (WJ) Mesenchymal Stromal Cells (MSCs) were isolated and characterized for their properties. Then, WJ-MSCs (1.5 × 106 cells) were seeded on decellularized hUAs (n = 5) and cultivated with (Group A) or without the presence of the CBPL, (Group B) for 30 days. Histological analysis involving immunohistochemistry (against Ki67, for determination of cell proliferation) and indirect immunofluorescence (against activated MAP kinase, additional marker for cell growth and proliferation) was performed. Results: The decellularized hUAs retained their initial vessel’s properties, in terms of key-specific proteins, the biochemical and biomechanical characteristics were preserved. The evaluation of the repopulation process indicated a more uniform distribution of WJ-MSCs in group A compared to group B. The repopulated vascular grafts of group B were characterized by greater Ki67 and MAP kinase expression compared to group A. Conclusion: The results of this study indicated that the CBPL may improve the repopulation efficacy, thus bringing the biological SDVGs one step closer to clinical application.


2009 ◽  
Vol 15 (9) ◽  
pp. 2665-2676 ◽  
Author(s):  
Liqiong Gui ◽  
Akihito Muto ◽  
Stephen A. Chan ◽  
Christopher K. Breuer ◽  
Laura E. Niklason

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1952
Author(s):  
Max Wacker ◽  
Jan Riedel ◽  
Heike Walles ◽  
Maximilian Scherner ◽  
George Awad ◽  
...  

In this study, we contrast the impacts of surface coating bacterial nanocellulose small-diameter vascular grafts (BNC-SDVGs) with human albumin, fibronectin, or heparin–chitosan upon endothelialization with human saphenous vein endothelial cells (VEC) or endothelial progenitor cells (EPC) in vitro. In one scenario, coated grafts were cut into 2D circular patches for static colonization of a defined inner surface area; in another scenario, they were mounted on a customized bioreactor and subsequently perfused for cell seeding. We evaluated the colonization by emerging metabolic activity and the preservation of endothelial functionality by water soluble tetrazolium salts (WST-1), acetylated low-density lipoprotein (AcLDL) uptake assays, and immune fluorescence staining. Uncoated BNC scaffolds served as controls. The fibronectin coating significantly promoted adhesion and growth of VECs and EPCs, while albumin only promoted adhesion of VECs, but here, the cells were functionally impaired as indicated by missing AcLDL uptake. The heparin–chitosan coating led to significantly improved adhesion of EPCs, but not VECs. In summary, both fibronectin and heparin–chitosan coatings could beneficially impact the endothelialization of BNC-SDVGs and might therefore represent promising approaches to help improve the longevity and reduce the thrombogenicity of BNC-SDVGs in the future.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 1388-1401
Author(s):  
Megan Kimicata ◽  
Prateek Swamykumar ◽  
John P. Fisher

2003 ◽  
Vol 30 (4) ◽  
pp. 507-517 ◽  
Author(s):  
Rachael H Schmedlen ◽  
Wafa M Elbjeirami ◽  
Andrea S Gobin ◽  
Jennifer L West

Cytotherapy ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. S41-S42
Author(s):  
S. Perez Lopez ◽  
M. Navarro Rego ◽  
M. Álvarez Viejo ◽  
M. Perez Basterrechea ◽  
J. Cenis Anadon ◽  
...  

2007 ◽  
Vol 31 (4) ◽  
pp. 682-689 ◽  
Author(s):  
Xinwen Wang ◽  
Peter Lin ◽  
Qizhi Yao ◽  
Changyi Chen

Sign in / Sign up

Export Citation Format

Share Document