scholarly journals An Overview of Methods for Cardiac Rhythm Detection in Zebrafish

Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 329
Author(s):  
Fiorency Santoso ◽  
Ali Farhan ◽  
Agnes L. Castillo ◽  
Nemi Malhotra ◽  
Ferry Saputra ◽  
...  

The heart is the most important muscular organ of the cardiovascular system, which pumps blood and circulates, supplying oxygen and nutrients to peripheral tissues. Zebrafish have been widely explored in cardiotoxicity research. For example, the zebrafish embryo has been used as a human heart model due to its body transparency, surviving several days without circulation, and facilitating mutant identification to recapitulate human diseases. On the other hand, adult zebrafish can exhibit the amazing regenerative heart muscle capacity, while adult mammalian hearts lack this potential. This review paper offers a brief description of the major methodologies used to detect zebrafish cardiac rhythm at both embryonic and adult stages. The dynamic pixel change method was mostly performed for the embryonic stage. Other techniques, such as kymography, laser confocal microscopy, artificial intelligence, and electrocardiography (ECG) have also been applied to study heartbeat in zebrafish embryos. Nevertheless, ECG is widely used for heartbeat detection in adult zebrafish since ECG waveforms’ similarity between zebrafish and humans is prominent. High-frequency ultrasound imaging (echocardiography) and modern electronic sensor tag also have been proposed. Despite the fact that each method has its benefits and limitations, it is proved that zebrafish have become a promising animal model for human cardiovascular disease, drug pharmaceutical, and toxicological research. Using those tools, we conclude that zebrafish behaviors as an excellent small animal model to perform real-time monitoring for the developmental heart process with transparent body appearance, to conduct the in vivo cardiovascular performance and gene function assays, as well as to perform high-throughput/high content drug screening.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4094 ◽  
Author(s):  
Sunmi Yeo ◽  
Changhan Yoon ◽  
Ching-Ling Lien ◽  
Tai-Kyong Song ◽  
K. Kirk Shung

This paper reports the feasibility of Nakagami imaging in monitoring the regeneration process of zebrafish hearts in a noninvasive manner. In addition, spectral Doppler waveforms that are typically used to access the diastolic function were measured to validate the performance of Nakagami imaging. A 30-MHz high-frequency ultrasound array transducer was used to acquire backscattered echo signal for spectral Doppler and Nakagami imaging. The performances of both methods were validated with flow and tissue-mimicking phantom experiments. For in vivo experiments, both spectral Doppler and Nakagami imaging were simultaneously obtained from adult zebrafish with amputated hearts. Longitudinal measurements were performed for five zebrafish. From the experiments, the E/A ratio measured using spectral Doppler imaging increased at 3 days post-amputation (3 dpa) and then decreased to the value before amputation, which were consistent with previous studies. Similar results were obtained from the Nakagami imaging where the Nakagami parameter value increased at 3 dpa and decreased to its original value. These results suggested that the Nakagami and spectral Doppler imaging would be useful techniques in monitoring the regeneration of heart or tissues.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Samuel Röhl ◽  
Linnea Eriksson ◽  
Robert Saxelin ◽  
Mariette Lengquist ◽  
Kenneth Caidahl ◽  
...  

Objective: Ultrasound BioMicroscopy (UBM), or high-frequency ultrasound, is a novel technique used for assessment of anatomy and physiology small research animals. In this study, we evaluate the UBM assessment of the re-endothelialization process following denudation of the carotid artery in rats. Methods: Ultrasound BioMicroscopy data from three different experiments were analyzed. A total of 66 rats of three different strains (Sprague-Dawley, Wistar and Goto-Kakizaki) were included in this study. All animals were subjected to common carotid artery balloon injury and examined with UBM 2 and 4 weeks after injury. Re-endothelialization in UBM was measured as the length from the carotid bifurcation to the distal edge of the intimal hyperplasia. En face staining with Evans-blue dye was performed upon euthanization at 4 weeks after injury followed by tissue harvest for morphological and immunohistochemical evaluation. Results: A significant correlation (Spearman r=0.63,p<0.0001) and an agreement according to Bland-Altman test was identified when comparing all measurements of re-endothelialization in high frequency ultrasound and en face staining. Analysis by animal strain revealed a similar pattern and a significant growth in re-endothelialization length measured in UBM from 2 to 4 weeks could be identified. Immunohistochemical staining for von Willebrand factor confirmed the presence of endothelium in the areas detected as re-endothelialized by the ultrasound assessment. Conclusion: Ultrasound BioMicroscopy can be used for longitudinal in vivo assessment of the re-endothelialization following arterial injury in rats.


Author(s):  
A. W. Kastelein ◽  
B. C. de Graaf ◽  
Y. P. Latul ◽  
K. W. J. Verhorstert ◽  
J. Holthof ◽  
...  

Ultrasonics ◽  
2009 ◽  
Vol 49 (2) ◽  
pp. 226-230 ◽  
Author(s):  
Chih-Kuang Yeh ◽  
Jia-Jiun Chen ◽  
Meng-Lin Li ◽  
Jer-Junn Luh ◽  
Jia-Jin Jason Chen

2006 ◽  
Vol 119 (5) ◽  
pp. 3438-3438
Author(s):  
Orlando Aristizábal ◽  
Daniel H. Turnbull ◽  
Jeffrey A. Ketterling

Sign in / Sign up

Export Citation Format

Share Document