scholarly journals Flavonoids: Potential Candidates for the Treatment of Neurodegenerative Disorders

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 99
Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.

Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyloidal lateral sclerosis (ALS), and Huntington disease (HD) are the most concerned disorders due to the lack of effective therapeutics and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, yet they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and ER-stress, which combats with stress conditions, but the overwhelming cellular stress response induces cell damage. Small molecules such as flavonoids could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the mechanistic ways of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.


2006 ◽  
Vol 32 (4-5) ◽  
pp. 757-773 ◽  
Author(s):  
Vittorio Calabrese ◽  
Eleonora Guagliano ◽  
Maria Sapienza ◽  
Mariangela Panebianco ◽  
Stella Calafato ◽  
...  

BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 390-393
Author(s):  
F.-Nora Vögtle

AbstractThe majority of mitochondrial proteins are encoded in the nuclear genome, so that the nearly entire proteome is assembled by post-translational preprotein import from the cytosol. Proteomic imbalances are sensed and induce cellular stress response pathways to restore proteostasis. Here, the mitochondrial presequence protease MPP serves as example to illustrate the critical role of mitochondrial protein biogenesis and proteostasis on cellular integrity.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 552
Author(s):  
Wenbo Hu ◽  
Xiaogang Wang ◽  
Sanyuan Ma ◽  
Zhangchuan Peng ◽  
Yang Cao ◽  
...  

The silkworm Bombyx mori is an economically important insect, as it is the main producer of silk. Fibroin heavy chain (FibH) gene, encoding the core component of silk protein, is specifically and highly expressed in silk gland cells but not in the other cells. Although the silkworm FibH gene has been well studied in transcriptional regulation, its biological functions in the development of silk gland cells remain elusive. In this study, we constructed a CRISPRa system to activate the endogenous transcription of FibH in Bombyx mori embryonic (BmE) cells, and the mRNA expression of FibH was successfully activated. In addition, we found that FibH expression was increased to a maximum at 60 h after transient transfection of sgRNA/dCas9-VPR at a molar ratio of 9:1. The qRT-PCR analysis showed that the expression levels of cellular stress response-related genes were significantly up-regulated along with activated FibH gene. Moreover, the lyso-tracker red and monodansylcadaverine (MDC) staining assays revealed an apparent appearance of autophagy in FibH-activated BmE cells. Therefore, we conclude that the activation of FibH gene leads to up-regulation of cellular stress responses-related genes in BmE cells, which is essential for understanding silk gland development and the fibroin secretion process in B. mori.


Author(s):  
Vittorio Calabrese ◽  
Cesare Mancuso ◽  
Carlo De Marco ◽  
Anna Maria Giuffrida Stella ◽  
D. Allan Butterfield

2020 ◽  
Vol 21 (16) ◽  
pp. 5830 ◽  
Author(s):  
Alexander Mensch ◽  
Stephan Zierz

Cellular stress has been considered a relevant pathogenetic factor in a variety of human diseases. Due to its primary functions by means of contractility, metabolism, and protein synthesis, the muscle cell is faced with continuous changes of cellular homeostasis that require rapid and coordinated adaptive mechanisms. Hence, a prone susceptibility to cellular stress in muscle is immanent. However, studies focusing on the cellular stress response in muscular disorders are limited. While in recent years there have been emerging indications regarding a relevant role of cellular stress in the pathophysiology of several muscular disorders, the underlying mechanisms are to a great extent incompletely understood. This review aimed to summarize the available evidence regarding a deregulation of the cellular stress response in individual muscle diseases. Potential mechanisms, as well as involved pathways are critically discussed, and respective disease models are addressed. Furthermore, relevant therapeutic approaches that aim to abrogate defects of cellular stress response in muscular disorders are outlined.


1994 ◽  
Vol 4 (4) ◽  
pp. 315-324 ◽  
Author(s):  
Julia M. Corton ◽  
John G. Gillespie ◽  
D.Grahame Hardie

Sign in / Sign up

Export Citation Format

Share Document