scholarly journals Protective Role of Combined Polyphenols and Micronutrients against Influenza A Virus and SARS-CoV-2 Infection In Vitro

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1721
Author(s):  
Marta De Angelis ◽  
David Della-Morte ◽  
Gabriele Buttinelli ◽  
Angela Di Martino ◽  
Francesca Pacifici ◽  
...  

Polyphenols have been widely studied for their antiviral effect against respiratory virus infections. Among these, resveratrol (RV) has been demonstrated to inhibit influenza virus replication and more recently, it has been tested together with pterostilbene against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present work, we evaluated the antiviral activity of polydatin, an RV precursor, and a mixture of polyphenols and other micronutrients, named A5+, against influenza virus and SARS-CoV-2 infections. To this end, we infected Vero E6 cells and analyzed the replication of both respiratory viruses in terms of viral proteins synthesis and viral titration. We demonstrated that A5+ showed a higher efficacy in inhibiting both influenza virus and SARS-CoV-2 infections compared to polydatin treatment alone. Indeed, post infection treatment significantly decreased viral proteins expression and viral release, probably by interfering with any step of virus replicative cycle. Intriguingly, A5+ treatment strongly reduced IL-6 cytokine production in influenza virus-infected cells, suggesting its potential anti-inflammatory properties during the infection. Overall, these results demonstrate the synergic and innovative antiviral efficacy of A5+ mixture, although further studies are needed to clarify the mechanisms underlying its inhibitory effect.

2022 ◽  
Author(s):  
Zheng Zhihui ◽  
Yuqian Zhang ◽  
Gang Tian ◽  
Zehua Wang ◽  
Ronghua Wang ◽  
...  

Abstract Background Pudilan Xiaoyan Oral Liquid (PDL) as a famous Chinese patent medicine has been widely used for treating upper respiratory tract infection. However, the antiviral effect of PDL remain unclear. Here, the antiviral effect of in vitro and in vivo of PDL against influenza A virus were for the first time investigated. Methods The in vitro inhibitory effect of PDL on influenza A virus was investigated using MDCK cell model. The in vivo inhibitory effect on influenza virus pneumonia was evaluated with the ICR female mice (14-16 g) model infected by influenza A virus (A/FM/1/47, H1N1, mouse-adapted). Moreover, expression levels of inflammatory cytokines including TNF-α, IP10, IL-10, IL-1β, IL-6 and IFN-γ in lung tissue were measured by qRT-PCR. The potential mechanism of PDL against acute lung injury caused by influenza A virus was investigated by RT-PCR and Western blot. Results Our results indicated that in vitro PDL has a broad-spectrum inhibitory effect on different subtypes of influenza A viruses and in vivo PDL could dose-dependently prevent weight loss of mice, increase food intake and reduce mortality caused by influenza A H1N1 virus. Furthermore, PDL could markedly improve the acute lung injury caused by influenza A virus and significantly reduce the mRNA levels of inflammatory factors such as TNF-α, IP10, IL-10, IL-1β, IL-6, and IFN-γ. Mechanistic research indicated that the protective effect of PDL on viral pneumonia might be achieved by inhibiting TLR3/MyD88/IRAK4/TRAF3 signaling pathway. Conclusion PDL not only showed a good inhibitory effect on influenza A virus in vitro, but also exhibited a significant protective effect against lethal influenza virus infection in vivo. These findings provide evidence for the clinical treatment of influenza A virus infection with PDL.


2015 ◽  
Vol 90 (1) ◽  
pp. 444-456 ◽  
Author(s):  
Seiya Yamayoshi ◽  
Mariko Watanabe ◽  
Hideo Goto ◽  
Yoshihiro Kawaoka

ABSTRACTOver the past 2 decades, several novel influenza virus proteins have been identified that modulate viral infectionsin vitroand/orin vivo. The PB2 segment, which is one of the longest influenza A virus segments, is known to encode only one viral protein, PB2. In the present study, we used reverse transcription-PCR (RT-PCR) targeting viral mRNAs transcribed from the PB2 segment to look for novel viral proteins encoded by spliced mRNAs. We identified a new viral protein, PB2-S1, encoded by a novel spliced mRNA in which the region corresponding to nucleotides 1513 to 1894 of the PB2 mRNA is deleted. PB2-S1 was detected in virus-infected cells and in cells transfected with a protein expression plasmid encoding PB2. PB2-S1 localized to mitochondria, inhibited the RIG-I-dependent interferon signaling pathway, and interfered with viral polymerase activity (dependent on its PB1-binding capability). The nucleotide sequences around the splicing donor and acceptor sites for PB2-S1 were highly conserved among pre-2009 human H1N1 viruses but not among human H1N1pdm and H3N2 viruses. PB2-S1-deficient viruses, however, showed growth kinetics in MDCK cells and virulence in mice similar to those of wild-type virus. The biological significance of PB2-S1 to the replication and pathogenicity of seasonal H1N1 influenza A viruses warrants further investigation.IMPORTANCETranscriptome analysis of cells infected with influenza A virus has improved our understanding of the host response to viral infection, because such analysis yields considerable information about bothin vitroandin vivoviral infections. However, little attention has been paid to transcriptomes derived from the viral genome. Here we focused on the splicing of mRNA expressed from the PB2 segment and identified a spliced viral mRNA encoding a novel viral protein. This result suggests that other, as yet unidentified viral proteins encoded by spliced mRNAs could be expressed in virus-infected cells. A viral transcriptome including the viral spliceosome should be evaluated to gain new insights into influenza virus infection.


1998 ◽  
Vol 42 (3) ◽  
pp. 647-653 ◽  
Author(s):  
Weixing Li ◽  
Paul A. Escarpe ◽  
Eugene J. Eisenberg ◽  
Kenneth C. Cundy ◽  
Clive Sweet ◽  
...  

ABSTRACT GS 4071 is a potent carbocyclic transition-state analog inhibitor of influenza virus neuraminidase with activity against both influenza A and B viruses in vitro. GS 4116, the guanidino analog of GS 4071, is a 10-fold more potent inhibitor of influenza virus replication in tissue culture than GS 4071. In this study we determined the oral bioavailabilities of GS 4071, GS 4116, and their respective ethyl ester prodrugs in rats. Both parent compounds and the prodrug of the guanidino analog exhibited poor oral bioavailability (2 to 4%) and low peak concentrations in plasma (C maxs; C max<0.06 μg/ml). In contrast, GS 4104, the ethyl ester prodrug of GS 4071, exhibited good oral bioavailability (35%) as GS 4071 and high C maxs of GS 4071 (Cmax = 0.47 μg/ml) which are 150 times the concentration necessary to inhibit influenza virus neuraminidase activity by 90%. The bioavailability of GS 4104 as GS 4071 was also determined in mice (30%), ferrets (11%), and dogs (73%). The plasma of all four species exhibited high, sustained concentrations of GS 4071 such that at 12 h postdosing the concentrations of GS 4071 in plasma exceeded those necessary to inhibit influenza virus neuraminidase activity by 90%. These results demonstrate that GS 4104 is an orally bioavailable prodrug of GS 4071 in animals and that it has the potential to be an oral agent for the prevention and treatment of influenza A and B virus infections in humans.


2018 ◽  
Vol 115 (45) ◽  
pp. 11613-11618 ◽  
Author(s):  
Daniel H. Goldhill ◽  
Aartjan J. W. te Velthuis ◽  
Robert A. Fletcher ◽  
Pinky Langat ◽  
Maria Zambon ◽  
...  

Favipiravir is a broad-spectrum antiviral that has shown promise in treatment of influenza virus infections. While emergence of resistance has been observed for many antiinfluenza drugs, to date, clinical trials and laboratory studies of favipiravir have not yielded resistant viruses. Here we show evolution of resistance to favipiravir in the pandemic H1N1 influenza A virus in a laboratory setting. We found that two mutations were required for robust resistance to favipiravir. We demonstrate that a K229R mutation in motif F of the PB1 subunit of the influenza virus RNA-dependent RNA polymerase (RdRP) confers resistance to favipiravir in vitro and in cell culture. This mutation has a cost to viral fitness, but fitness can be restored by a P653L mutation in the PA subunit of the polymerase. K229R also conferred favipiravir resistance to RNA polymerases of other influenza A virus strains, and its location within a highly conserved structural feature of the RdRP suggests that other RNA viruses might also acquire resistance through mutations in motif F. The mutations identified here could be used to screen influenza virus-infected patients treated with favipiravir for the emergence of resistance.


1954 ◽  
Vol 99 (3) ◽  
pp. 227-250 ◽  
Author(s):  
Igor Tamm ◽  
Karl Folkers ◽  
Clifford H. Shunk ◽  
Frank L. Horsfall

Chloro derivatives of benzimidazole were found to be 2 to 3 times more active than corresponding methyl derivatives in causing inhibition of Lee virus multiplication in chorioallantoic membrane cultures in vitro. The most active benzimidazole derivative thus far tested is 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB); it caused 75 per cent inhibition of Lee virus multiplication in membrane cultures at a concentration of 0.38 x 10–4 M. On the other hand, 5,6-dimethyl-1-alpha;-D-ribofuranosylbenzimidazole, the moiety present in vitamin B12, failed to inhibit Lee virus multiplication at a concentration of 35 x 10–4 M. Other N-glycosides of 5,6-dichlorobenzimidazole were considerably less active than DRB. In single cycle experiments, the degree of inhibition of Lee virus multiplication by DRB in membrane cultures was not dependent on the amount of virus in the inoculum. This compound did not inactivate the infectivity of extracellular Lee virus, had no effect on virus-erythrocyte interaction, did not interfere with the adsorption of the virus by the host tissue, nor affect the release of newly formed virus from the membrane. The inhibitory effect of DRB on Lee virus multiplication, in contrast to that of 2,5-dimethylbenzimidazole, persisted after transfer of infected membranes into fresh culture medium not containing the compound. Both DRB and the 2,5-dimethyl compound caused 99 per cent inhibition of Lee virus multiplication without affecting oxygen uptake of the membrane. Tissue proliferation of membrane pieces in roller tube culture was not significantly affected by DRB at inhibitory concentration, whereas at equivalent concentration the 2,5-dimethyl compound did restrict cellular growth. At higher concentrations, both compounds caused retardation of cell proliferation. This effect was reversible on removal of either compound from the medium. The multiplication of several strains of influenza A and B viruses, i.e. Lee, MB, PR8, and FM1, was inhibited to the same degree by each of the two compounds; DRB was 35 times more active than the 2,5-dimethyl compound relative to each of the strains. DRB caused inhibition of Lee virus multiplication in intact embryonated chicken eggs and in mice without causing significant signs of toxicity in either host. Some of the implications of these findings are discussed in relation to the mechanism of the inhibition of influenza virus multiplication.


1998 ◽  
Vol 72 (8) ◽  
pp. 6283-6290 ◽  
Author(s):  
Ervin Fodor ◽  
Peter Palese ◽  
George G. Brownlee ◽  
Adolfo García-Sastre

ABSTRACT We have engineered influenza A/WSN/33 viruses which have viral RNA (vRNA) segments with altered base pairs in the conserved double-stranded region of their vRNA promoters. The mutations were introduced into the segment coding for the neuraminidase (NA) by using a reverse genetics system. Two of the rescued viruses which share a C-G→A-U double mutation at positions 11 and 12′ at the 3′ and 5′ ends of the NA-specific vRNA, respectively, showed approximately a 10-fold reduction of NA levels. The mutations did not dramatically affect the NA-specific vRNA levels found in virions or the NA-specific vRNA and cRNA levels in infected cells. In contrast, there was a significant decrease in the steady-state levels of NA-specific mRNAs in infected cells. Transcription studies in vitro with ribonucleoprotein complexes isolated from the two transfectant viruses indicated that transcription initiation of the NA-specific segment was not affected. However, the majority of NA-specific transcripts lacked poly(A) tails, suggesting that mutations in the double-stranded region of the influenza virus vRNA promoter can attenuate polyadenylation of mRNA molecules. This is the first time that a promoter mutation in an engineered influenza virus has shown a differential effect on influenza virus RNA transcription and replication.


Acta Naturae ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 20-30 ◽  
Author(s):  
E. P. Goncharova ◽  
Y. A. Kostyro ◽  
A. V. Ivanov ◽  
M. A. Zenkova

The development of novel drugs against the influenza virus with high efficiency and low toxicity is an urgent and important task. Previous reports have demonstrated that compounds based on sulfo derivatives of oligo- and polysaccharides possess high antiviral activity. In this study, we have examined the ability of a novel sulfonated derivative of -cyclodextrin (KS-6469) to inhibit the influenza virus A/WSN/33 (H1N1) infection in vitro and in vivo. The antiviral potential of KS-6469 against the influenza virus was evaluated in Madin-Darby Canine Kidney epithelial cells treated with serially diluted KS-6469. We found out that KS-6469 completely inhibited viral reproduction after treatment of the infected cells with the compound for 48 h. Our data show that double intranasal treatment of mice with KS-6469 fully protected the animals from a lethal infection and significantly decreased the viral titers in the lungs of the infected animals. Thus, the novel sulfonated -cyclodextrin derivative KS-6469 is a promising candidate for the development of antiviral drugs for preventing and treating the influenza infection.


Author(s):  
А.Г. Емельянова ◽  
М.В. Никифорова ◽  
Е.С. Дон ◽  
Н.Р. Махмудова ◽  
И.Н. Фалынскова ◽  
...  

Цель исследования - изучение возможного прямого влияния препарата «Анаферон детский» на жизненный цикл вируса гриппа А в процессе развития инфекции, а также дозозависимости противовирусного эффекта in vitro . Методика. Исследование противовирусной активности препарата «Анаферон детский» in vitro было проведено с использованием культуры клеток MDCK (Madin Darby canine kidney) и эталонных штаммов вируса гриппа A (H1N1) pdm09: A/California/07/09 и А/California/04/09, полученных от ВОЗ. Использовались методы оценки подавления Анафероном детским вирусной репликации (по результатам иммуноферментного анализа по определению экспрессии внутренних белков NP и M1 вируса гриппа А) и его влияние на ультраструктурные особенности морфогенеза вируса гриппа методом электронной микроскопии. В качестве положительного контроля был использован Озельтамивир карбоксилат в концентрации 10 мкМ. Для мониторинга валидности экспериментальной модели в работе использовали клетки, зараженные вирусом без добавления экспериментальных образцов (контроль вируса), а также интактные клетки (клеточный контроль). Результаты. В ходе исследования показан дозозависимый противовирусный эффект препарата «Анаферон детский» для 3 тестируемых разведений - 1/8, 1/12, 1/16. Методом электронной микроскопии показано, что применение препарата «Анаферон детский» при сравнении с контрольным образцом влияло на процесс почкования вирионов. Заключение. Впервые показана дозозависимость противовирусного действия препарата «Анаферон детский», а также подтверждена его эффективность в отношении двух штаммов вируса пандемического гриппа А/H1N1. Документировано, что применение препарата «Анаферон детский» нарушает жизненный цикл вируса гриппа А. Механизмы развития такого эффекта требуют дополнительного изучения, однако можно предположить их связь с ИФН-индуцирующими свойствами препарата «Анаферон детский», так как было показано, что в начале лечения вирусной инфекции препарат вызывает индукцию синтеза белков системы интерферонов. The aim of this study was to evaluate a possible direct effect of Anaferon for Children on the life cycle of influenza A virus during infection development and a dose response of the antiviral effect in vitro. Methods. The in vitro antiviral activity of Anaferon for Children was studied on cultured MDCK cells and reference strains of influenza virus A (H1N1) pdm09: A/California/07/09 and A/California/04/09, both from the WHO. Inhibition of viral replication by Anaferon for Children and its effect on ultrastructural features of the influenza morphogenesis were evaluated using electron microscopy. Results. The study demonstrated a dose dependence of Anaferon for Children antiviral activity for three dilutions - 1/8, 1/12, and 1/16. Anaferon for Children affected the process of virion budding as compared to placebo. Conclusion. The study showed that the anti-influenza action of Anaferon for Children was dose-dependent and confirmed that this drug was effective against two strains of pandemic A/H1N1 influenza. Furthermore, Anaferon for children disrupted one or several stages of the virus life cycle.


2010 ◽  
Vol 54 (8) ◽  
pp. 3442-3450 ◽  
Author(s):  
Ashley N. Brown ◽  
James J. McSharry ◽  
Qingmei Weng ◽  
Elizabeth M. Driebe ◽  
David M. Engelthaler ◽  
...  

ABSTRACT One of the biggest challenges in the effort to treat and contain influenza A virus infections is the emergence of resistance during treatment. It is well documented that resistance to amantadine arises rapidly during the course of treatment due to mutations in the gene coding for the M2 protein. To address this problem, it is critical to develop experimental systems that can accurately model the selection of resistance under drug pressure as seen in humans. We used the hollow-fiber infection model (HFIM) system to examine the effect of amantadine on the replication of influenza virus, A/Albany/1/98 (H3N2), grown in MDCK cells. At 24 and 48 h postinfection, virus replication was inhibited in a dose-dependent fashion. At 72 and 96 h postinfection, virus replication was no longer inhibited, suggesting the emergence of amantadine-resistant virus. Sequencing of the M2 gene revealed that mutations appeared at between 48 and 72 h of drug treatment and that the mutations were identical to those identified in the clinic for amantadine-resistant viruses (e.g., V27A, A30T, and S31N). Interestingly, we found that the type of mutation was strongly affected by the dose of the drug. The data suggest that the HFIM is a good model for influenza virus infection and resistance generation in humans. The HFIM has the advantage of being a highly controlled system where multiplicity parameters can be directly and accurately controlled and measured.


2014 ◽  
Vol 58 (9) ◽  
pp. 5220-5228 ◽  
Author(s):  
Mélanie Samson ◽  
Yacine Abed ◽  
François-Marc Desrochers ◽  
Stephanie Hamilton ◽  
Angela Luttick ◽  
...  

ABSTRACTNeuraminidase inhibitors (NAIs) play a major role for managing influenza virus infections. The widespread oseltamivir resistance among 2007-2008 seasonal A(H1N1) viruses and community outbreaks of oseltamivir-resistant A(H1N1)pdm09 strains highlights the need for additional anti-influenza virus agents. Laninamivir is a novel long-lasting NAI that has demonstratedin vitroactivity against influenza A and B viruses, and its prodrug (laninamivir octanoate) is in phase II clinical trials in the United States and other countries. Currently, little information is available on the mechanisms of resistance to laninamivir. In this study, we first performed neuraminidase (NA) inhibition assays to determine the activity of laninamivir against a set of influenza A viruses containing NA mutations conferring resistance to one or many other NAIs. We also generated drug-resistant A(H1N1) and A(H3N2) viruses underin vitrolaninamivir pressure. Laninamivir demonstrated a profile of susceptibility that was similar to that of zanamivir. More specifically, it retained activity against oseltamivir-resistant H275Y and N295S A(H1N1) variants and the E119V A(H3N2) variant.In vitro, laninamivir pressure selected the E119A NA substitution in the A/Solomon Islands/3/2006 A(H1N1) background, whereas E119K and G147E NA changes along with a K133E hemagglutinin (HA) substitution were selected in the A/Quebec/144147/2009 A(H1N1)pdm09 strain. In the A/Brisbane/10/2007 A(H3N2) background, a large NA deletion accompanied by S138A/P194L HA substitutions was selected. This H3N2 variant had altered receptor-binding properties and was highly resistant to laninamivir in plaque reduction assays. Overall, we confirmed the similarity between zanamivir and laninamivir susceptibility profiles and demonstrated that both NA and HA changes can contribute to laninamivir resistancein vitro.


Sign in / Sign up

Export Citation Format

Share Document