scholarly journals Water Thermodynamics and Its Effects on the Protein Stability and Activity

Biophysica ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 413-428
Author(s):  
Francesco Mallamace ◽  
Domenico Mallamace ◽  
Sow-Hsin Chen ◽  
Paola Lanzafame ◽  
Georgia Papanikolaou

We discuss a phenomenon regarding water that was until recently a subject of scientific interest: i.e., the dynamical crossover, from the fragile to strong glass forming material, for both bulk and protein hydration water. Such crossover is characterized by a temperature TL in which significant dynamical changes like the decoupling (or the violation of the Stokes-Einstein relation) of homologous transport parameters, e.g., the density relaxation time τ and the viscosity η, occur in the system. On this respect we considered the dynamic properties of water-protein systems. More precisely, we focused our study on proteins and their hydration water, as far as bulk and confined water. In order to clarify the effects of the water dynamical crossover on the protein properties we considered and discussed in a comparative way previous and new experimental data, obtained from different techniques and molecular dynamic simulation (MD). We pointed out the reasons for different dynamical findings from the use of different experimental techniques.

2012 ◽  
Vol 24 (6) ◽  
pp. 064103 ◽  
Author(s):  
Francesco Mallamace ◽  
Carmelo Corsaro ◽  
Piero Baglioni ◽  
Emiliano Fratini ◽  
Sow-Hsin Chen

2009 ◽  
Vol 21 (50) ◽  
pp. 504105 ◽  
Author(s):  
H E Stanley ◽  
P Kumar ◽  
S Han ◽  
M G Mazza ◽  
K Stokely ◽  
...  

2010 ◽  
Vol 114 (5) ◽  
pp. 1870-1878 ◽  
Author(s):  
Francesco Mallamace ◽  
Caterina Branca ◽  
Carmelo Corsaro ◽  
Nancy Leone ◽  
Jeroen Spooren ◽  
...  

2014 ◽  
Vol 90 (4) ◽  
Author(s):  
Zhe Wang ◽  
Emiliano Fratini ◽  
Mingda Li ◽  
Peisi Le ◽  
Eugene Mamontov ◽  
...  

2018 ◽  
Vol 4 (11) ◽  
pp. eaat8632 ◽  
Author(s):  
Shuai Wei ◽  
Zach Evenson ◽  
Moritz Stolpe ◽  
Pierre Lucas ◽  
C. Austen Angell

The dynamic properties of liquid phase-change materials (PCMs), such as viscosity η and the atomic self-diffusion coefficientD, play an essential role in the ultrafast phase switching behavior of novel nonvolatile phase-change memory applications. To connect η toD, the Stokes-Einstein relation (SER) is commonly assumed to be valid at high temperatures near or above the melting temperatureTmand is often used for assessing liquid fragility (or crystal growth velocity) of technologically important PCMs. However, using quasi-elastic neutron scattering, we provide experimental evidence for a breakdown of the SER even at temperatures aboveTmin the high–atomic mobility state of a PCM, Ge1Sb2Te4. This implies that although viscosity may have strongly increased during cooling, diffusivity can remain high owing to early decoupling, being a favorable feature for the fast phase switching behavior of the high-fluidity PCM. We discuss the origin of the observation and propose the possible connection to a metal-semiconductor and fragile-strong transition hidden belowTm.


MRS Advances ◽  
2016 ◽  
Vol 1 (26) ◽  
pp. 1891-1902 ◽  
Author(s):  
Francesco Mallamace ◽  
Carmelo Corsaro ◽  
Domenico Mallamace ◽  
Cirino Vasi ◽  
Sebastiano Vasi ◽  
...  

ABSTRACTWe discuss recent literature data on the relaxation times (the primary tα), viscosity, and self-diffusion in water-glycerol and water-methanol mixtures across a wide temperature range from the stable water phase to the deep supercooled regime (373–147K). In particular, to clarify the role of hydrophilicity interactions (the hydrogen bonds) and hydrophobic interactions we study the mixture in terms of the water molar fraction (XW) with fixed temperatures at 5K steps across the entire composition range, and we find a marked deviation from the ideal thermodynamic behavior of the transport functions. This deviation is strongly T and XW dependent and spans values that range from two orders of magnitude at the highest temperature to more than five in the deeply supercooled regime (more precisely, at ≃200K). We analyze these deviations in terms of how the measured values differ from ideal values and find that the hydrogen-bonding water network dominates system properties up to XW = 0.3. We also examine an Arrhenius plot of the maximum excess value (Δtα(T) vs. 1/T) and find two significant changes due to water: one at the dynamical crossover temperature (TL ≃ 225K, i.e., the locus of the Widom line), and one at T ≃ 315K (the water isothermal compressibility χT minimum).


2019 ◽  
Vol 100 (5) ◽  
Author(s):  
Baicheng Mei ◽  
Yuyuan Lu ◽  
Lijia An ◽  
Zhen-Gang Wang

2019 ◽  
Vol 20 (22) ◽  
pp. 5708 ◽  
Author(s):  
Francesco Puosi ◽  
Antonio Tripodo ◽  
Dino Leporini

Many systems, including polymers and molecular liquids, when adequately cooled and/or compressed, solidify into a disordered solid, i.e., a glass. The transition is not abrupt, featuring progressive decrease of the microscopic mobility and huge slowing down of the relaxation. A distinctive aspect of glass-forming materials is the microscopic dynamical heterogeneity (DH), i.e., the presence of regions with almost immobile particles coexisting with others where highly mobile ones are located. Following the first compelling evidence of a strong correlation between vibrational dynamics and ultraslow relaxation, we posed the question if the vibrational dynamics encodes predictive information on DH. Here, we review our results, drawn from molecular-dynamics numerical simulation of polymeric and molecular glass-formers, with a special focus on both the breakdown of the Stokes–Einstein relation between diffusion and viscosity, and the size of the regions with correlated displacements.


2020 ◽  
Vol 22 (4) ◽  
pp. 2557-2565 ◽  
Author(s):  
Qi-Long Cao ◽  
Pan-Pan Wang ◽  
Duo-Hui Huang

Molecular dynamics simulations of Ni36Zr64, Cu65Zr35 and Ni80Al20 were carried out over a broad range of temperature (900–3000 K) to investigate the Stokes–Einstein (SE) relation for glass-forming melts.


Sign in / Sign up

Export Citation Format

Share Document