scholarly journals Geopolymers as Sustainable Material for Strengthening and Restoring Unreinforced Masonry Structures: A Review

Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 532
Author(s):  
Anabel B. Abulencia ◽  
Ma. Beatrice D. Villoria ◽  
Roneh Glenn D. Libre ◽  
Pauline Rose J. Quiatchon ◽  
Ithan Jessemar R. Dollente ◽  
...  

Unreinforced masonry (URM) structures are vulnerable to earthquakes; thus, materials and techniques for their strengthening and restoration should be developed. However, the materials used in some of the existing retrofitting technologies for URM and the waste produced at its end-of-life are unsustainable. The production of ordinary Portland cement (OPC) worldwide has enormously contributed to the global carbon footprint, resulting in persistent environmental problems. Replacing OPC with geopolymers, which are more sustainable and environmentally friendly, presents a potential solution to these problems. Geopolymers can replace the OPC component in engineering cementitious composites (ECC), recommended to strengthen and restore URM structures. In the present paper, the state-of-the-art knowledge development on applying geopolymers in URM structures is discussed. The discussion is focused on geopolymers and their components, material characterization, geopolymers as a strengthening and restoration material, and fiber-reinforced geopolymers and their application to URM structures. Based on this review, it was found that the mechanical properties of geopolymers are on par with that of OPC; however, there are few studies on the mentioned applications of geopolymers. The characterization of geopolymers’ mechanical and physical properties as a restoration material for URM structures is still limited. Therefore, other properties such as chemical interaction with the substrate, workability, thixotropic behavior, and aesthetic features of geopolymers need to be investigated for its wide application. The application method of geopolymer-based ECC as a strengthening material for a URM structure is by grouting injection. It is also worth recommending that other application techniques such as deep repointing, jacketing, and cement-plastering be explored.

2015 ◽  
Vol 1752 ◽  
pp. 125-130 ◽  
Author(s):  
Yamila M. Omar ◽  
Carlo Maragliano ◽  
Chia-Yun Lai ◽  
Francesco Lo Iacono ◽  
Nicolas Bologna ◽  
...  

ABSTRACTOne of the main areas of improvement in capacitive deionization technologies is the materials used for electrodes which have very specific requirements. In the present work, a wide range of material characterization techniques are employed to determine the suitability of a multiwall carbon nanostructure thin film as electrode material. The electrical, mechanical, surface and wetting characteristics are studied proving the membrane highly conductive (σ=7.25 103 S/m), having competitive electro-sorption capacity (11.7 F/g at 10 mV/s) and surface area (149 m2/g), strain rate dependent mechanical properties and hydrophobic wetting behavior.


Author(s):  
Nicholas Randall ◽  
Rahul Premachandran Nair

Abstract With the growing complexity of integrated circuits (IC) comes the issue of quality control during the manufacturing process. In order to avoid late realization of design flaws which could be very expensive, the characterization of the mechanical properties of the IC components needs to be carried out in a more efficient and standardized manner. The effects of changes in the manufacturing process and materials used on the functioning and reliability of the final device also need to be addressed. Initial work on accurately determining several key mechanical properties of bonding pads, solder bumps and coatings using a combination of different methods and equipment has been summarized.


Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 29
Author(s):  
Carl F. O. Dahlberg ◽  
Jonas Faleskog ◽  
Per-Lennart Larsson

Correlation of sharp indentation problems is examined theoretically and numerically. The analysis focuses on elastic-plastic pressure-sensitive materials and especially the case when the local plastic zone is so large that elastic effects on the mean contact pressure will be small or negligible as is the case for engineering metals and alloys. The results from the theoretical analysis indicate that the effect from pressure-sensitivity and plastic strain-hardening are separable at correlation of hardness values. This is confirmed using finite element methods and closed-form formulas are presented representing a pressure-sensitive counterpart to the Tabor formula at von Mises plasticity. The situation for the relative contact area is more complicated as also discussed.


Sign in / Sign up

Export Citation Format

Share Document