scholarly journals Tissue-Resident NK Cells: Development, Maturation, and Clinical Relevance

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1553 ◽  
Author(s):  
Elaheh Hashemi ◽  
Subramaniam Malarkannan

Natural killer (NK) cells belong to type 1 innate lymphoid cells (ILC1) and are essential in killing infected or transformed cells. NK cells mediate their effector functions using non-clonotypic germ-line-encoded activation receptors. The utilization of non-polymorphic and conserved activating receptors promoted the conceptual dogma that NK cells are homogeneous with limited but focused immune functions. However, emerging studies reveal that NK cells are highly heterogeneous with divergent immune functions. A distinct combination of several activation and inhibitory receptors form a diverse array of NK cell subsets in both humans and mice. Importantly, one of the central factors that determine NK cell heterogeneity and their divergent functions is their tissue residency. Decades of studies provided strong support that NK cells develop in the bone marrow. However, evolving evidence supports the notion that NK cells also develop and differentiate in tissues. Here, we summarize the molecular basis, phenotypic signatures, and functions of tissue-resident NK cells and compare them with conventional NK cells.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5480-5480
Author(s):  
Isabel Gonzalez-Gascon y Marin ◽  
Ana María Pérez-Corral ◽  
Jorge Gayoso ◽  
Javier Anguita ◽  
Ana Carolina Franco ◽  
...  

Abstract Background The main functions of Natural Killer (NK) cells are early protection against viruses or tumour cells and production of cytokines that regulate immune functions. NK cells are the first lymphoid cells to repopulate the marrow after Stem Cell Transplantation (SCT) and reach normal levels within 1 month after transplant. Acquisition of both, inhibiting and activating receptors on developing NK cells is an important step in their functional maturation. Previous studies showed the beneficial effect of NK alloreactivity in prevention of relapse, especially in the setting of haploidentical SCT. The aim of this study is to compare the reconstitution of the NK cell compartment during the first 3 months after unmanipulated haploidentical peripheral blood SCT (Haplo) and HLA-identical sibling peripheral blood SCT (HLA-id). Patients and Methods 11 adult patients received SCT (7 Haplo and 4 HLA-id) at Gregorio Marañón Hospital (Madrid-Spain) from November 2012 to April 2013. Conditioning regimen comprised fludarabine, cyclophosphamide and busulfan for Haplo SCT and fludarabine and busulfan or fludaribine and melphalan for HLA-id SCT. Prophylaxis for acute graft-versus-host disease consisted of high dose cyclophosphamide on days +3 and +4, cyclosporine A and mycophenolate mofetil for Haplo and Cyclosporine A and methotrexate for HLA-id. Patient´s characteristics and transplant outcomes are shown in table 1. We analysed reconstitution patterns and phenotype of NK at day +15, +30, +60, and +90 after transplantation by multi-color flow cytometry on FC500 Beckman Coulter® cytometer using the following anti-human monoclonal antibodies: CD3 FITC, CD56 ECD, CD45 PC7, NKG2A PC7, NKp30 PC5, NKp44 PE, Nkp46 PC5, and NKG2D PE (Beckman Coulter®). For comparison between the two groups Mann–Whitney U-test was used. Results 2/7 patients who received Haplo SCT died early in the post-transplantation period (day +50 and +66), and were excluded of the analysis because NK cells were not recovered by those days. NK cells reached normal levels by day +30: median 71 cells/µl (21-1089)) after Haplo; median 213.5 cells/µl (113-499) after HLA-id, and remained at high levels through follow up, with no significant differences between the two groups. Similarly to previous studies, a large percentage of NKbright cells was observed at day +30 after Haplo (median 89% of NK cells (55-97%)), a percentage that tended to decrease at day +60 (30% (7-38%)) and +90 (35% (10-45%)). Interestingly the percentage of NKbright cells after HLA-id SCT at day +30 (median 14.5% of NK cells (6-30%)) compared with Haplo, was significantly lower (p=0.016). This was accompanied by a significantly lower expression of inhibitory receptor NKG2A after HLA-id SCT than after Haplo: 59.5% (50-62%) versus 92.5% (50-62%) at day +30; 54% (38-61%) versus 86% (70-88%) versus at day +60 (p=0.016). Activating receptors NKp44 and NKp30 showed a low expression after both types of SCT throughout the first 3 months after transplantation. By contrast, activating receptor NKp46 levels were significantly higher at day +30 after Haplo than after HLA-id SCT (93% (87-98%) versus 50% (37-51%)) (p=0.016). Finally, high and similar proportions of activating receptor NKG2D were observed in both types of SCT. Figure 1 illustrates the recovery of the NK cell receptor phenotype for each type of SCT. Conclusions Our data showed an early and fast recovery of NK cells after Haplo and HLA-id SCT. However, phenotypic maturation of NK cells appears to be different for each type of transplant. NK cells generated after Haplo exhibit a more immature phenotype, characterized by a higher proportion of NKbright cells, and a higher expression of NKG2A at day +30. Interestingly expression of NKp46 was significantly higher after Haplo than after HLA-id SCT. Other authors have reported cytotoxic activity of these NK cells with high expression of NKp46, suggesting that cytotoxicity may be preserved in these immature NK cells. NKp30, NKG2D and NKp44 expression is less affected by the type of SCT. Acknowledgments This work has been partially supported by Project “Evaluación de la reconstitución inmune después del trasplante haploidéntico de progenitores hemopoyéticos sin depleción T” from Fundación Mutua Madrileña. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 118 (50) ◽  
pp. e2117965118
Author(s):  
Kentaro Yomogida ◽  
Tarin M. Bigley ◽  
Tihana Trsan ◽  
Susan Gilfillan ◽  
Marina Cella ◽  
...  

Identification of type 1 innate lymphoid cells (ILC1s) has been problematic. The transcription factor Hobit encoded by Zfp683 has been proposed as a major driver of ILC1 programs. Using Zfp683 reporter mice, we showed that correlation of Hobit expression with ILC1s is tissue- and context-dependent. In liver and intestinal mucosa, Zfp683 expression correlated well with ILC1s; in salivary glands, Zfp683 was coexpressed with the natural killer (NK) master transcription factors Eomes and TCF1 in a unique cell population, which we call ILC1-like NK cells; during viral infection, Zfp683 was induced in conventional NK cells of spleen and liver. The impact of Zfp683 deletion on ILC1s and NK cells was also multifaceted, including a marked decrease in granzyme- and interferon-gamma (IFNγ)–producing ILC1s in the liver, slightly fewer ILC1s and more Eomes+ TCF1+ ILC1-like NK cells in salivary glands, and only reduced production of granzyme B by ILC1 in the intestinal mucosa. NK cell–mediated control of viral infection was unaffected. We conclude that Hobit has two major impacts on ILC1s: It sustains liver ILC1 numbers, while promoting ILC1 functional maturation in other tissues by controlling TCF1, Eomes, and granzyme expression.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 156
Author(s):  
Jasmina M. Luczo ◽  
Sydney L. Ronzulli ◽  
Stephen M. Tompkins

Natural killer (NK) cells are part of the innate immunity repertoire, and function in the recognition and destruction of tumorigenic and pathogen-infected cells. Engagement of NK cell activating receptors can lead to functional activation of NK cells, resulting in lysis of target cells. NK cell activating receptors specific for non-major histocompatibility complex ligands are NKp46, NKp44, NKp30, NKG2D, and CD16 (also known as FcγRIII). The natural cytotoxicity receptors (NCRs), NKp46, NKp44, and NKp30, have been implicated in functional activation of NK cells following influenza virus infection via binding with influenza virus hemagglutinin (HA). In this review we describe NK cell and influenza A virus biology, and the interactions of influenza A virus HA and other pathogen lectins with NK cell natural cytotoxicity receptors (NCRs). We review concepts which intersect viral immunology, traditional virology and glycobiology to provide insights into the interactions between influenza virus HA and the NCRs. Furthermore, we provide expert opinion on future directions that would provide insights into currently unanswered questions.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1802
Author(s):  
Nayoung Kim ◽  
Mi Yeon Kim ◽  
Woo Seon Choi ◽  
Eunbi Yi ◽  
Hyo Jung Lee ◽  
...  

Natural killer (NK) cells are innate cytotoxic lymphocytes that provide early protection against cancer. NK cell cytotoxicity against cancer cells is triggered by multiple activating receptors that recognize specific ligands expressed on target cells. We previously demonstrated that glycogen synthase kinase (GSK)-3β, but not GSK-3α, is a negative regulator of NK cell functions via diverse activating receptors, including NKG2D and NKp30. However, the role of GSK-3 isoforms in the regulation of specific ligands on target cells is poorly understood, which remains a challenge limiting GSK-3 targeting for NK cell-based therapy. Here, we demonstrate that GSK-3α rather than GSK-3β is the primary isoform restraining the expression of NKG2D ligands, particularly ULBP2/5/6, on tumor cells, thereby regulating their susceptibility to NK cells. GSK-3α also regulated the expression of the NKp30 ligand B7-H6, but not the DNAM-1 ligands PVR or nectin-2. This regulation occurred independently of BCR-ABL1 mutation that confers tyrosine kinase inhibitor (TKI) resistance. Mechanistically, an increase in PI3K/Akt signaling in concert with c-Myc was required for ligand upregulation in response to GSK-3α inhibition. Importantly, GSK-3α inhibition improved cancer surveillance by human NK cells in vivo. Collectively, our results highlight the distinct role of GSK-3 isoforms in the regulation of NK cell reactivity against target cells and suggest that GSK-3α modulation could be used to enhance tumor cell susceptibility to NK cells in an NKG2D- and NKp30-dependent manner.


2008 ◽  
Vol 76 (4) ◽  
pp. 1719-1727 ◽  
Author(s):  
Semih Esin ◽  
Giovanna Batoni ◽  
Claudio Counoupas ◽  
Annarita Stringaro ◽  
Franca Lisa Brancatisano ◽  
...  

ABSTRACT Our previous studies demonstrated that Mycobacterium bovis bacillus Calmette-Guérin (BCG) can directly interact with human NK cells and induce the proliferation, gamma interferon production, and cytotoxic activity of such cells without the need for accessory cells. Thus, the aim of the present study was to identify the putative receptor(s) responsible for the recognition of BCG by human NK cells and potentially involved in the activation of NK cells. To this end, we first investigated the surface expression of three NK cell-activating receptors belonging to the natural cytoxicity receptor (NCR) family on highly purified human NK cells upon in vitro direct stimulation with BCG. An induction of the surface expression of NKp44, but not of NKp30 or NKp46, was observed after 3 and 4 days of in vitro stimulation with live BCG. The NKp44 induction involved mainly a particular NK cell subset expressing the CD56 marker at high density, CD56bright. In order to establish whether NKp44 could directly bind to BCG, whole BCG cells were stained with soluble forms of the three NCRs chimeric for the human immunoglobulin G (IgG) Fc fragment (NKp30-Fc, NKp44-Fc, NKp46-Fc), followed by incubation with a phycoerythrin (PE)-conjugated goat anti-human IgG antibody. Analysis by flow cytometry of the complexes revealed a higher PE fluorescence intensity for BCG incubated with NKp44-Fc than for BCG incubated with NKp30-Fc, NKp46-Fc, or negative controls. The binding of NKp44-Fc to the BCG surface was confirmed with immunogold labeling using transmission electron microscopy, suggesting the presence of a putative ligand(s) for human NKp44 on the BCG cell wall. Similar binding assays performed on a number of gram-positive and gram-negative bacteria revealed a pattern of NKp44-Fc binding restricted to members of the genus Mycobacterium, to the mycobacterium-related species Nocardia farcinica, and to Pseudomonas aeruginosa. Altogether, the results obtained indicate, for the first time, that at least one member of the NCR family (NKp44) may be involved in the direct recognition of bacterial pathogens by human NK cells.


2011 ◽  
Vol 60 (8) ◽  
pp. 1195-1205 ◽  
Author(s):  
Beatriz Sanchez-Correa ◽  
Sara Morgado ◽  
Inmaculada Gayoso ◽  
Juan M. Bergua ◽  
Javier G. Casado ◽  
...  

Cancers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 2 ◽  
Author(s):  
Marisa Market ◽  
Katherine Baxter ◽  
Leonard Angka ◽  
Michael Kennedy ◽  
Rebecca Auer

Natural Killer (NK) cells are granular lymphocytes of the innate immune system that are able to recognize and kill tumor cells without undergoing clonal selection. Discovered over 40 years ago, they have since been recognized to possess both cytotoxic and cytokine-producing effector functions. Following trauma, NK cells are suppressed and their effector functions are impaired. This is especially important for cancer patients undergoing the removal of solid tumors, as surgery has shown to contribute to the development of metastasis and cancer recurrence postoperatively. We have recently shown that NK cells are critical mediators in the formation of metastasis after surgery. While research into the mechanism(s) responsible for NK cell dysfunction is ongoing, knowledge of these mechanisms will pave the way for perioperative therapeutics with the potential to improve cancer outcomes by reversing NK cell dysfunction. This review will discuss mechanisms of suppression in the postoperative environment, including hypercoagulability, suppressive soluble factors, the expansion of suppressive cell populations, and how this affects NK cell biology, including modulation of cell surface receptors, the potential for anergy, and immunosuppressive NK cell functions. This review will also outline potential immunotherapies to reverse postoperative NK dysfunction, with the goal of preventing surgery-induced metastasis.


Sign in / Sign up

Export Citation Format

Share Document