scholarly journals Merkel Cell Polyomavirus and Merkel Cell Carcinoma

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1774 ◽  
Author(s):  
Valeria Pietropaolo ◽  
Carla Prezioso ◽  
Ugo Moens

Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Thomas Tilling ◽  
Ingrid Moll

Merkel cell carcinoma (MCC), a highly aggressive skin tumour with increasing incidence, is associated with the newly discovered Merkel cell polyomavirus (MCPyV). Studies on MCC and MCPyV as well as other risk factors have significantly increased our knowledge of MCC pathogenesis, but the cells of origin, which could be important targets in future therapies, are still unknown. Merkel cells (MCs), the neuroendocrine cells of the skin, were believed to be at the origin of MCC due to their phenotypic similarities. However, for several reasons, for example, heterogeneous differentiation of MCCs and postmitotic character of MCs, it is not very likely that MCC develops from differentiated MCs. Skin stem cells, probably from the epidermal lineage, are more likely to be cells of origin in MCC. Future studies will have to address these questions more directly in order to identify the physiological cells which are transformed to MCC cells.


2018 ◽  
Author(s):  
Miriam Becker ◽  
Melissa Dominguez ◽  
Lilo Greune ◽  
Laura Soria-Martinez ◽  
Moritz M. Pfleiderer ◽  
...  

AbstractMerkel Cell Polyomavirus (MCPyV) is a small, non-enveloped tumor virus associated with an aggressive form of skin cancer, the Merkel cell carcinoma (MCC). MCPyV infections are highly prevalent in the human population with MCPyV virions being continuously shed from human skin. However, the precise host cell tropism(s) of MCPyV remains unclear: MCPyV is able to replicate within a subset of dermal fibroblasts, but MCPyV DNA has also been detected in a variety of other tissues. However, MCPyV appears different from other polyomaviruses as it requires sulfated polysaccharides such as heparan sulfates and/or chondroitin sulfates for initial attachment. Like other polyomaviruses, MCPyV engages sialic acid as a (co-receptor). To explore the infectious entry process of MCPyV, we analyzed the cell biological determinants of MCPyV entry into A549 cells, a highly transducible lung carcinoma cell line, in comparison to well-studied simian virus 40 and a number of other viruses. Our results indicate that MCPyV enters cells via caveolar/lipid raft-mediated endocytosis but not macropinocytosis, clathrin-mediated endocytosis or glycosphingolipid-enriched carriers. The viruses internalized in small endocytic pits that led the virus to endosomes and from there to the endoplasmic reticulum (ER). Similar to other polyomaviruses, trafficking required microtubular transport, acidification of endosomes, and a functional redox environment. To our surprise, the virus was found to acquire a membrane envelope within endosomes, a phenomenon not reported for other viruses. Only minor amounts of viruses reached the ER, while the majority was retained in endosomal compartments suggesting that endosome-to-ER trafficking is a bottleneck during infectious entry.ImportanceMCPyV is the first polyomavirus directly implicated in the development of an aggressive human cancer, the Merkel Cell Carcinoma (MCC). Although MCPyV is constantly shed from healthy skin, MCC incidence increases among aging and immunocompromised individuals. To date, the events connecting initial MCPyV infection and subsequent transformation still remain elusive. MCPyV differs from other known polyomaviruses concerning its cell tropism, entry receptor requirements, and infection kinetics. In this study, we examined the cellular requirements for endocytic entry as well as the subcellular localization of incoming virus particles. A thorough understanding of the determinants of the infectious entry pathway and the specific biological niche will benefit prevention of virus-derived cancers such as MCC.


2019 ◽  
Vol 93 (6) ◽  
Author(s):  
Miriam Becker ◽  
Melissa Dominguez ◽  
Lilo Greune ◽  
Laura Soria-Martinez ◽  
Moritz M. Pfleiderer ◽  
...  

ABSTRACT Merkel cell polyomavirus (MCPyV) is a small, nonenveloped tumor virus associated with an aggressive form of skin cancer, Merkel cell carcinoma (MCC). MCPyV infections are highly prevalent in the human population, with MCPyV virions being continuously shed from human skin. However, the precise host cell tropism(s) of MCPyV remains unclear: MCPyV is able to replicate within a subset of dermal fibroblasts, but MCPyV DNA has also been detected in a variety of other tissues. However, MCPyV appears different from other polyomaviruses, as it requires sulfated polysaccharides, such as heparan sulfates and/or chondroitin sulfates, for initial attachment. Like other polyomaviruses, MCPyV engages sialic acid as a (co)receptor. To explore the infectious entry process of MCPyV, we analyzed the cell biological determinants of MCPyV entry into A549 cells, a highly transducible lung carcinoma cell line, in comparison to well-studied simian virus 40 and a number of other viruses. Our results indicate that MCPyV enters cells via caveolar/lipid raft-mediated endocytosis but not macropinocytosis, clathrin-mediated endocytosis, or glycosphingolipid-enriched carriers. The viruses were internalized in small endocytic pits that led the virus to endosomes and from there to the endoplasmic reticulum (ER). Similar to other polyomaviruses, trafficking required microtubular transport, acidification of endosomes, and a functional redox environment. To our surprise, the virus was found to acquire a membrane envelope within endosomes, a phenomenon not reported for other viruses. Only minor amounts of viruses reached the ER, while the majority was retained in endosomal compartments, suggesting that endosome-to-ER trafficking is a bottleneck during infectious entry. IMPORTANCE MCPyV is the first polyomavirus directly implicated in the development of an aggressive human cancer, Merkel cell carcinoma (MCC). Although MCPyV is constantly shed from healthy skin, the MCC incidence increases among aging and immunocompromised individuals. To date, the events connecting initial MCPyV infection and subsequent transformation still remain elusive. MCPyV differs from other known polyomaviruses concerning its cell tropism, entry receptor requirements, and infection kinetics. In this study, we examined the cellular requirements for endocytic entry as well as the subcellular localization of incoming virus particles. A thorough understanding of the determinants of the infectious entry pathway and the specific biological niche will benefit prevention of virus-derived cancers such as MCC.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Kashif Rasheed ◽  
Baldur Sveinbjørnsson ◽  
Ugo Moens

Abstract Background Approximately 15% of human cancers are attributed to viruses. Numerous studies have shown that high-risk human polyomaviruses (HR-HPV) and Merkel cell polyomavirus (MCPyV) are two human tumor viruses associated with anogenetal and oropharyngeal cancers, and with Merkel cell carcinoma, respectively. MCPyV has been found in HR-HPV positive anogenetal and oropharyngeal tumors, suggesting that MCPyV can act as a co-factor in HR-HPV induced oncogenesis. This prompted us to investigate whether the oncoproteins large T-antigen (LT) and small antigen (sT) of MCPyV could affect the transcriptional activity HPV16 and HPV18 and vice versa whether HPV16 and HPV18 E6 and E7 oncoproteins affected the expression of MCPyV LT and sT. Reciprocal stimulation of these viral oncoproteinscould enhance the oncogenic processes triggered by these tumor viruses. Methods Transient co-transfection studies using a luciferase reporter plasmid with the long control region of HPV16 or HPV18, or the early or late promoter of MCPyV and expression plasmids for LT and sT, or E6 and E7, respectively were performed in the HPV-negative cervical cancer cell line C33A, in the keratinocyte cell line HaCaT, and in the oral squamous cell carcinoma cell line HSC-3. Transfections were also performed with deletion mutants of all these promoters and with mutants of all four oncoproteins. Finally, the effect of E6 and E7 on LT and sT expression in the MCPyV-positive Merkel cell carcinoma cell line WaGa and the effect of LT and sT on the expression of E6 and E7 was monitored by Western blotting. Results LT and sT stimulated the transcriptional activity of the HPV16 and HPV18 LCR and v.v. E6 and E7 potentiated the MCPyV early and late promoter in all cell lines. Induction by E6 and E7 was p53- and pRb-independent, and transactivation by LT did not require DNA binding, nuclear localization and HSC70/pRb interaction, whereas sT stimulated the HPV16/18 LCR activity in a PP2A- and DnaJ-independent manner. Conclusions These results indicate that the co-infection of MCPyV may act as a co-factor in the initiation and/or progression of HPV-induced cancers.


2014 ◽  
Vol 27 (9) ◽  
pp. 1182-1192 ◽  
Author(s):  
Zenggang Pan ◽  
Yuan-Yuan Chen ◽  
Xiaojun Wu ◽  
Vijay Trisal ◽  
Sharon P Wilczynski ◽  
...  

2008 ◽  
Vol 14 (9) ◽  
pp. 1491-1493 ◽  
Author(s):  
Vincent Foulongne ◽  
Nicolas Kluger ◽  
Olivier Dereure ◽  
Natalie Brieu ◽  
Bernard Guillot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document