scholarly journals Suppressive Effect and Molecular Mechanism of Houttuynia cordata Thunb. Extract against Prostate Carcinogenesis and Castration-Resistant Prostate Cancer

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3403
Author(s):  
Subhawat Subhawa ◽  
Aya Naiki-Ito ◽  
Hiroyuki Kato ◽  
Taku Naiki ◽  
Masayuki Komura ◽  
...  

Houttuynia cordata Thunb. (HCT) is a well-known Asian medicinal plant with biological activities used in the treatment of many diseases including cancer. This study investigated the effects of HCT extract and its ethyl acetate fraction (EA) on prostate carcinogenesis and castration-resistant prostate cancer (CRPC). HCT and EA induced apoptosis in androgen-sensitive prostate cancer cells (LNCaP) and CRPC cells (PCai1) through activation of caspases, down-regulation of androgen receptor, and inactivation of AKT/ERK/MAPK signaling. Rutin was found to be a major component in HCT (44.00 ± 5.61 mg/g) and EA (81.34 ± 5.21 mg/g) in a previous study. Rutin had similar effects to HCT/EA on LNCaP cells and was considered to be one of the active compounds. Moreover, HCT/EA inhibited cell migration and epithelial-mesenchymal transition phenotypes via STAT3/Snail/Twist pathways in LNCaP cells. The consumption of 1% HCT-mixed diet significantly decreased the incidence of adenocarcinoma in the lateral prostate lobe of the Transgenic rat for adenocarcinoma of prostate model. Similarly, tumor growth of PCai1 xenografts was significantly suppressed by 1% HCT treatment. HCT also induced caspase-dependent apoptosis via AKT inactivation in both in vivo models. Together, the results of in vitro and in vivo studies indicate that HCT has inhibitory effects against prostate carcinogenesis and CRPC. This plant therefore should receive more attention as a source for the future development of non-toxic chemopreventive agents against various cancers.

2019 ◽  
Vol 37 (7_suppl) ◽  
pp. 326-326
Author(s):  
Nicolas Gordon ◽  
Matthew Joseph Schiewer ◽  
Peter Gallagher ◽  
Amy C Mandigo ◽  
Emanuela Dylgjeri ◽  
...  

326 Background: The administration of ascorbate has proved lethal to and highly selective for a variety of cancer cell types; however, despite an increasingly impressive body of evidence, there has not been a robust effort to translate the observed in vitro and in vivo outcomes to the clinic. This is partially due to the fact that the mechanism by which ascorbate exerts its anti-cancer effect is still under investigation. A simplified model depicts ascorbate as a pro-drug for reactive oxygen species (ROS), which accumulate intracellularly and generate DNA damage. It was therefore hypothesized that poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi), by inhibiting DNA damage repair, would augment the toxicity of ascorbate. Methods: In vitro and in vivo models systems queried for anti-tumor effects of PARP inhibitors and ascorbate. Results: Two distinct castration-resistant prostate cancer (CRPC) models were sensitive to ascorbate at physiologically attainable concentrations. These in vitro models were then subjected to treatment with three different PARP inhibitors (olaparib, niraparib, and talazoparib) alone and in combination with ascorbate. The addition of a sub-lethal dose of ascorbate significantly increased cell death across a range of doses for all three PARP inhibitors. A combination index was generated for olaparib and ascorbate in both CRPC models; the results suggest a strongly synergistic relationship between olaparib and ascorbate. Use of a CRPC in vivo model demonstrated that the combination of olaparib and ascorbate significantly increased tumor doubling time compared to vehicle controls and monotherapy. This in vivo efficacy was even more profound in an additional model using castrated mice to mimic the effect of hormone therapy. Additional mechanistic studies are in progress to further investigate the potential for ascorbate and olaparib combination therapy. Conclusions: Ultimately, these data suggest the combination of ascorbate and PARP inhibitors could be an effective treatment for CRPC.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2947
Author(s):  
Fanny Bery ◽  
Mathilde Cancel ◽  
Maxime Guéguinou ◽  
Marie Potier-Cartereau ◽  
Christophe Vandier ◽  
...  

Therapeutic strategies for metastatic castration-resistant prostate cancer aim to target androgen receptor signaling. Despite initial survival benefits, treatment resistance invariably occurs, leading to lethal disease. Therapies targeting the androgen receptor can induce the emergence of a neuroendocrine phenotype and reactivate embryonic programs associated with epithelial to mesenchymal transition. We recently reported that dysregulation of the calcium signal can induce the transcription factor Zeb1, a key determinant of cell plasticity during tumor progression. The aim of this study was to determine whether the androgen receptor-targeted treatment Enzalutamide could induce dysregulation of the calcium signal involved in the progression toward epithelial to mesenchymal transition and neuroendocrine differentiation, contributing to therapeutic escape. Our results show that Zeb1 and the SK3 potassium channel are overexpressed in vivo in neuroendocrine castration-resistant prostate cancer and in vitro in LNCaP cells neurodifferentiated after Enzalutamide treatment. Moreover, the neuroendocrine phenotype is associated with a deregulation of the expression of Orai calcium channels. We showed that Zeb1 and SK3 are critical drivers of neuroendocrine differentiation. Interestingly, Ohmline, an SK3 inhibitor, can prevent the expression of Zeb1 and neuroendocrine markers induced by Enzalutamide. This study offers new perspectives to increase hormone therapy efficacy and improve clinical outcomes.


2021 ◽  
Vol 14 (12) ◽  
pp. 1251
Author(s):  
Joanna Strand ◽  
Kjell Sjöström ◽  
Urpo J. Lamminmaki ◽  
Oskar Vilhelmsson Timmermand ◽  
Sven-Erik Strand ◽  
...  

Metastatic castration-resistant prostate cancer is today incurable. Conventional imaging methods have limited detection, affecting their ability to give an accurate outcome prognosis, and current therapies for metastatic prostate cancer are insufficient. This inevitably leads to patients relapsing with castration-resistant prostate cancer. Targeting prostate-specific antigens whose expression is closely linked to the activity in the androgen receptor pathway, and thus the pathogenesis of prostate cancer, is a possible way to increase specificity and reduce off-target effects. We have humanized and evaluated radioimmunoconjugates of a previously murine antibody, m5A10, targeting PSA intended for theranostics of hormone-refractory prostate cancer. The humanized antibody h5A10 was expressed in mammalian HEK293 cells transfected with the nucleotide sequences for the heavy and light chains of the antibody. Cell culture medium was filtered and purified by Protein G chromatography, and the buffer was changed to PBS pH 7.4 by dialysis. Murine and humanized 5A10 were conjugated with p-SCN-Bn-CHX-A”-DTPA. Surface plasmon resonance was used to characterize the binding to PSA of the immunoconjugates. Immunoconjugates were labeled with either indium-111 or lutetium-177. Biodistribution studies of murine and humanized 5A10 were performed in mice with LNCaP xenografts. 5A10 was successfully humanized, and in vivo targeting showed specific binding in xenografts. The results thus give an excellent platform for further theranostic development of humanized 5A10 for clinical applications.


Author(s):  
Michelle Naidoo ◽  
Fayola Levine ◽  
Tamara Gillot ◽  
Akintunde T. Orunmuyi ◽  
E. Oluwabunmi Olapade-Olaopa ◽  
...  

High mortality rates of prostate cancer (PCa) are associated with metastatic castration-resistant prostate cancer (CRPC) due to the maintenance of androgen receptor (AR) signaling despite androgen deprivation therapies (ADTs). The 8q24 chromosomal locus is a region of very high PCa susceptibility that carries genetic variants associated with high risk of PCa incidence. This region also carries frequent amplifications of the PVT1 gene, a non-protein coding gene that encodes a cluster of microRNAs including, microRNA-1205 (miR-1205), which are largely understudied. Herein, we demonstrate that miR-1205 is underexpressed in PCa cells and tissues and suppresses CRPC tumors in vivo. To characterize the molecular pathway, we identified and validated fry-like (FRYL) as a direct molecular target of miR-1205 and observed its overexpression in PCa cells and tissues. FRYL is predicted to regulate dendritic branching, which led to the investigation of FRYL in neuroendocrine PCa (NEPC). Resistance toward ADT leads to the progression of treatment related NEPC often characterized by PCa neuroendocrine differentiation (NED), however, this mechanism is poorly understood. Underexpression of miR-1205 is observed when NED is induced in vitro and inhibition of miR-1205 leads to increased expression of NED markers. However, while FRYL is overexpressed during NED, FRYL knockdown did not reduce NED, therefore revealing that miR-1205 induces NED independently of FRYL.


2021 ◽  
Vol 14 (10) ◽  
pp. 1020
Author(s):  
Zohaib Rana ◽  
Sarah Diermeier ◽  
Fearghal P. Walsh ◽  
Muhammad Hanif ◽  
Christian G. Hartinger ◽  
...  

Metastatic castration-resistant prostate cancer (CRPC) has a five-year survival rate of 28%. As histone deacetylases (HDACs) are overexpressed in CRPC, the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was trialled in CRPC patients but found to be toxic and inefficacious. Previously, we showed that novel HDAC inhibitors (Jazz90 (N1-hydroxy-N8-(4-(pyridine-2-carbothioamido)phenyl)octanediamide) and Jazz167 ([chlorido(η5-pentamethylcyclopentadieny[1–4](N1-hydroxy-N8-(4-(pyridine-2-carbothioamido-κ2N,S)phenyl)octanediamide)rhodium(III)] chloride) had a higher cancer-to-normal-cell selectivity and superior anti-angiogenic effects in CRPC (PC3) cells than SAHA. Thus, this study aimed to further investigate the efficacy and toxicity of these compounds. HUVEC tube formation assays revealed that Jazz90 and Jazz167 significantly reduced meshes and segment lengths in the range of 55–88 and 43–64%, respectively. However, Jazz90 and Jazz167 did not affect the expression of epithelial-to-mesenchymal transitioning markers E-cadherin and vimentin. Jazz90 and Jazz167 significantly inhibited the growth of PC3 and DU145 spheroids and reduced PC3 spheroid branching. Jazz90 and Jazz167 (25, 50 and 75 mg/kg/day orally for 21 days) were non-toxic in male BALB/c mice. The efficacy and safety of these compounds demonstrate their potential for further in vivo studies in CRPC models.


Oncogene ◽  
2014 ◽  
Vol 34 (21) ◽  
pp. 2764-2776 ◽  
Author(s):  
N Jiang ◽  
K Hjorth-Jensen ◽  
O Hekmat ◽  
D Iglesias-Gato ◽  
T Kruse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document