scholarly journals Carnitine Palmitoyltransferase 1 Regulates Prostate Cancer Growth under Hypoxia

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6302
Author(s):  
Leslimar Rios-Colon ◽  
Pawan Kumar ◽  
Susy Kim ◽  
Mitu Sharma ◽  
Yixin Su ◽  
...  

Hypoxia and hypoxia-related biomarkers are the major determinants of prostate cancer (PCa) aggressiveness. Therefore, a better understanding of molecular players involved in PCa cell survival under hypoxia could offer novel therapeutic targets. We previously reported a central role of mitochondrial protein carnitine palmitoyltransferase (CPT1A) in PCa progression, but its role in regulating PCa survival under hypoxia remains unknown. Here, we employed PCa cells (22Rv1 and MDA-PCa-2b) with knockdown or overexpression of CPT1A and assessed their survival under hypoxia, both in cell culture and in vivo models. The results showed that CPT1A knockdown in PCa cells significantly reduced their viability, clonogenicity, and sphere formation under hypoxia, while its overexpression increased their proliferation, clonogenicity, and sphere formation. In nude mice, 22Rv1 xenografts with CPT1A knockdown grew significantly slower compared to vector control cells (~59% reduction in tumor volume at day 29). On the contrary, CPT1A-overexpressing 22Rv1 xenografts showed higher tumor growth compared to vector control cells (~58% higher tumor volume at day 40). Pathological analyses revealed lesser necrotic areas in CPT1A knockdown tumors and higher necrotic areas in CPT1A overexpressing tumors. Immunofluorescence analysis of tumors showed that CPT1A knockdown strongly compromised the hypoxic areas (pimonidazole+), while CPT1A overexpression resulted in more hypoxia areas with strong expression of proliferation biomarkers (Ki67 and cyclin D1). Finally, IHC analysis of tumors revealed a significant decrease in VEGF or VEGF-D expression but without significant changes in biomarkers associated with microvessel density. These results suggest that CPT1A regulates PCa survival in hypoxic conditions and might contribute to their aggressiveness.

Neoplasma ◽  
2010 ◽  
Vol 57 (5) ◽  
pp. 488-493 ◽  
Author(s):  
F. Girard ◽  
J. Byrne ◽  
M. Downes ◽  
D. Fanning ◽  
F. Desgrandchamps ◽  
...  

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e16534-e16534 ◽  
Author(s):  
Lisa Butler ◽  
Swati Irani ◽  
Margaret Centenera ◽  
Natalie Ryan ◽  
Neil Pegg ◽  
...  

e16534 Background: Growth and survival of prostate cancer cells are initially dependent upon androgens, and androgen deprivation therapy (ADT) is used to control tumor growth. Unfortunately, resistance to ADT inevitably occurs, and patients relapse with lethal castrate-resistant prostate cancer (CRPC). Increased expression of the androgen receptor (AR) and constitutively active AR variants are hallmarks of CRPC, and treatments targeting aberrant AR signaling are urgently required. CCS1477 is an inhibitor of p300/CBP currently in a Phase I/IIa study for CRPC. CCS1477 enhances degradation of numerous cellular proteins including the AR and AR variants in prostate cancer cells. Our preclinical studies with this compound demonstrated potent single-agent efficacy of CCS1477 using in vitro and in vivo models of prostate cancer and, when used in combination, CCS1477 enhances the efficacy of enzalutamide, a clinical AR antagonist. Understanding the response of clinical tumors to CCS1477, and their potential adaptive evolution, is essential to personalize treatment and predict potential resistance mechanisms. Methods: To assess CCS1477 in human disease, we used a unique model in which clinical prostate tumors from radical prostatectomy are cultured as explants with maintenance of tissue integrity, cell proliferation and androgen signaling. Tumors from 13 patients were cultured in the absence or presence of CCS1477 (10µM) or enzalutamide (10µM) for 48 or 72 hours; micromolar doses were selected to account for altered small molecule uptake and penetration into tissues compared to cell lines, as previously reported. Proliferation, apoptosis and androgen signaling were all analyzed post-culture. Results: Whereas the tumor explants exhibited highly heterogenous proliferative responses to enzalutamide, tumors from all patients exhibited a marked antiproliferative response to CCS1477 (mean reduction in Ki67 immunoreactivity of > 90% compared to vehicle control; p < 0.0005). Culture with CCS1477 was associated with repression of androgen signaling in the prostate tissues, measured by expression and secretion of the clinical biomarker prostate specific antigen (PSA). Conclusions: The consistent and pronounced efficacy of CCS1477 in this patient-derived model would support further investigation of this class of epigenetic agents in the castrate-sensitive prostate cancer setting.


2016 ◽  
Vol 311 (3) ◽  
pp. E649-E660 ◽  
Author(s):  
Eliska Vavrova ◽  
Véronique Lenoir ◽  
Marie-Clotilde Alves-Guerra ◽  
Raphaël G. Denis ◽  
Julien Castel ◽  
...  

Impaired skeletal muscle mitochondrial fatty acid oxidation (mFAO) has been implicated in the etiology of insulin resistance. Carnitine palmitoyltransferase-1 (CPT1) is a key regulatory enzyme of mFAO whose activity is inhibited by malonyl-CoA, a lipogenic intermediate. Whereas increasing CPT1 activity in vitro has been shown to exert a protective effect against lipid-induced insulin resistance in skeletal muscle cells, only a few studies have addressed this issue in vivo. We thus examined whether a direct modulation of muscle CPT1/malonyl-CoA partnership is detrimental or beneficial for insulin sensitivity in the context of diet-induced obesity. By using a Cre- LoxP recombination approach, we generated mice with skeletal muscle-specific and inducible expression of a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA inhibition. When fed control chow, homozygous CPT1mt transgenic (dbTg) mice exhibited decreased CPT1 sensitivity to malonyl-CoA inhibition in isolated muscle mitochondria, which was sufficient to substantially increase ex vivo muscle mFAO capacity and whole body fatty acid utilization in vivo. Moreover, dbTg mice were less prone to high-fat/high-sucrose (HFHS) diet-induced insulin resistance and muscle lipotoxicity despite similar body weight gain, adiposity, and muscle malonyl-CoA content. Interestingly, these CPT1mt-protective effects in dbTg-HFHS mice were associated with preserved muscle insulin signaling, increased muscle glycogen content, and upregulation of key genes involved in muscle glucose metabolism. These beneficial effects of muscle CPT1mt expression suggest that a direct modulation of the malonyl-CoA/CPT1 partnership in skeletal muscle could represent a potential strategy to prevent obesity-induced insulin resistance.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119859 ◽  
Author(s):  
Maria Shabbir ◽  
Deeba N. Syed ◽  
Rahul K. Lall ◽  
Muhammad Rashid Khan ◽  
Hasan Mukhtar

2014 ◽  
Vol 29 (12) ◽  
pp. 2688-2696 ◽  
Author(s):  
Ning Wang ◽  
Freyja E Docherty ◽  
Hannah K Brown ◽  
Kimberley J Reeves ◽  
Anne CM Fowles ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document