scholarly journals Levulinic Acid Production from Delignified Rice Husk Waste over Manganese Catalysts: Heterogeneous Versus Homogeneous

Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 327 ◽  
Author(s):  
Arnia Putri Pratama ◽  
Dyah Utami Cahyaning Rahayu ◽  
Yuni Krisyuningsih Krisnandi

Delignified rice husk waste (25.66% (wt) cellulose) was converted to levulinic acid using three types of manganese catalysts, i.e., the Mn3O4/hierarchical ZSM-5 zeolite and Mn3O4 heterogenous catalysts, as well as Mn(II) ion homogeneous counterpart. The hierarchical ZSM-5 zeolite was prepared using the double template method and modified with Mn3O4 through wet-impregnation method. The structure and physicochemical properties of the catalyst materials were determined using several solid-state characterization techniques. The reaction was conducted in a 200 mL-three neck-round bottom flask at 100 °C and 130 °C for a certain reaction time in the presence of 10% (v/v) phosphoric acid and 2% (v/v) H2O2 aqueous solution, and the product was analyzed using HPLC. In general, 5-hydroxymethyl furfural (5-HMF) as the intermediate product was produced after 2 h and decreased after 4 h reaction time. To conclude, the Mn3O4/hierarchical ZSM-5 heterogenous catalyst gave the highest yield (wt %) of levulinic acid (39.75% and 27.60%, respectively) as the main product, after 8 h reaction time.

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3448
Author(s):  
Adrián García ◽  
Rut Sanchis ◽  
Francisco J. Llopis ◽  
Isabel Vázquez ◽  
María Pilar Pico ◽  
...  

γ-Valerolactone (GVL) is a valuable chemical that can be used as a clean additive for automotive fuels. This compound can be produced from biomass-derived compounds. Levulinic acid (LA) is a compound that can be obtained easily from biomass and it can be transformed into GVL by dehydration and hydrogenation using metallic catalysts. In this work, catalysts of Ni (a non-noble metal) supported on a series of natural and low-cost clay-materials have been tested in the transformation of LA into GVL. Catalysts were prepared by a modified wet impregnation method using oxalic acid trying to facilitate a suitable metal dispersion. The supports employed are attapulgite and two sepiolites with different surface areas. Reaction tests have been undertaken using an aqueous medium at moderate reaction temperatures of 120 and 180 °C. Three types of experiments were undertaken: (i) without H2 source, (ii) using formic acid (FA) as hydrogen source and (iii) using Zn in order to transform water in hydrogen through the reaction Zn + H2O → ZnO + H2. The best results have been obtained combining Zn (which plays a double role as a reactant for hydrogen formation and as a catalyst) and Ni/attapulgite. Yields to GVL higher than 98% have been obtained at 180 °C in the best cases. The best catalytic performance has been related to the presence of tiny Ni particles as nickel crystallites larger than 4 nm were not present in the most efficient catalysts.


Cerâmica ◽  
2018 ◽  
Vol 64 (371) ◽  
pp. 436-442 ◽  
Author(s):  
E. O. Moraes Júnior ◽  
J. O. Leite ◽  
A. G. Santos ◽  
M. J. B. Souza ◽  
A. M. Garrido Pedrosa

Abstract La1-xSrxNiO3 (x= 0.0, 0.3 or 0.7) perovskite-type oxides were synthesized using the modified proteic gel method and using collagen as an organic precursor. Catalysts of La1-xSrxNiO3/Al2O3 were obtained using the wet impregnation method. The synthesized catalysts were characterized by X-ray diffraction, surface area and temperature-programmed reduction. The catalysts were evaluated in the partial oxidation reaction of methane, and the levels of selectivity to CO, CO2, H2 and H2O were determined. Among the catalysts studied, the catalyst LaNiO3/Al2O3 had the highest methane conversion level (78%) and higher H2 selectivity (55%).


2021 ◽  
Author(s):  
Nawel Jr ◽  
Thabet Makhlouf ◽  
Gerard Delahay ◽  
Hassib Tounsi

Abstract Copper loaded η-alumina catalysts with different copper contents have been prepared by impregnation/evaporation method. The catalysts were characterized by XRD, FTIR, BET, UV–vis, H2-TPR and evaluated in the selective catalytic reduction of NO by NH3 and in the selective catalytic oxidation of NH3. The characterization techniques showed that the impregnation/evaporation method permits to obtain highly dispersed copper oxide species on the η-alumina surface when low amount of copper is used (1wt. % and 2 wt.%). The wet impregnation method made it possible to reach a well dispersion of the copper species on the surface of the alumina for the low copper contents Cu(1)-Al2O3 and Cu(2)-Al2O3. The latter justifies the similar behavior of Cu(1)-Al2O3) and Cu(2)-Al2O3 in the selective catalytic oxidation of NH3 where these catalysts exhibit a conversion of NH3 to N2 of the order of 100% at T > 500°C.


2007 ◽  
Vol 119 ◽  
pp. 231-234
Author(s):  
Yong Hwan Kim ◽  
Yon Ki Seo ◽  
Young Rae Cho ◽  
Kwang Ho Kim ◽  
Won Sub Chung

The Platinum catalysts on the carbon nanotubes(CNTs) supports of various diameters were prepared by wet impregnation method using H2PtCl6 precursor. The samples using 100nm, 15~20nm, 10~15nm and 5~10nm diameters of CNTs and carbon nanofibers(CNFs) are named Pt/t- CNFs, Pt/MWNTs20, Pt/MWNTs10 and Pt/MWNTs5, respectively. The effects of CNTs diameter on the Pt particle size and distribution were investigated by the means of powder XRD and TEM observation. In addition, the electro-catalytic characteristics for methanol electro-oxidation were estimated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The average size of Pt particles increases as follows; Pt/MWNTs10 < Pt/MWNTs5 < Pt/MWNTs20 < Pt/t-CNFs. The electro-catalytic characteristics of Pt/MWNTs10 and Pt/MWNTs20 are found to be superior in comparison with the others. For preparation of the most effective supported Pt catalyst, the optimum diameter of CNTs support in the range of 10-20nm, is needed.


2019 ◽  
Vol 948 ◽  
pp. 221-227
Author(s):  
Latifah Hauli ◽  
Karna Wijaya ◽  
Ria Armunanto

Catalyst of Chromium (Cr) metal supported on sulfated zirconia (SZ) was prepared by wet impregnation method. This study aim to determine the optimal concentration of Cr metal that impregnated on SZ catalyst. Preparation of catalyst was conducted at different concentrations of Cr metal (0.5%, 1%, 1.5% (w/w)), impregnated on SZ catalyst, then followed by the calcinationand reduction process. Catalysts were charaterized by FTIR, XRD, XRF, SAA, TEM, and acidity test. The results showed the Cr/SZ 1% had the highest acidity value of 8.22 mmol/g which confirmed from FTIR spectra. All the crystal phase of these catalysts were in monoclinic. The specific surface area increased with the increasing of Cr metal concentration on SZ catalyst and the isotherm adsorption-desorption of N2 gas observed all the catalysts as mesoporous material. The impregnation process formed particles agglomeration.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 947 ◽  
Author(s):  
Edson Edain González ◽  
Ricardo Rangel ◽  
Javier Lara ◽  
Pascual Bartolo-Pérez ◽  
Juan José Alvarado-Gil ◽  
...  

Nowadays, one of the most important challenges that humanity faces is to find alternative ways of reducing pollutant emissions. CeO2/Bi2Mo1−xRuxO6 and Au/Bi2Mo1−xRuxO6 catalysts were prepared to efficiently transform carbon monoxide (CO) to carbon dioxide (CO2) at low temperatures. The systems were prepared in a two-step process. First, Bi2Mo1−xRuxO6 supports were synthesized through the hydrothermal procedure under microwave heating. Then, CeO2 was deposited on Bi2Mo1−xRuxO6 using the wet impregnation method, while the incipient impregnation method was selected to deposit gold nanoparticles. The CeO2/Bi2Mo1−xRuxO6 and Au/Bi2Mo1−xRuxO6 catalysts were characterized using SEM microscopy and XRD. Furthermore, energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used. Tests were carried out for the supported catalysts in CO oxidation, and high conversion values, nearing 100%, was observed in a temperature range of 100 to 250 °C. The results showed that the best system was the Au/Bi2Mo0.95Ru0.05O6 catalyst, with CO oxidation starting at 50 °C and reaching 100% conversion at 186 °C.


RSC Advances ◽  
2019 ◽  
Vol 9 (38) ◽  
pp. 21804-21809 ◽  
Author(s):  
WanXin Yang ◽  
Guoqing Guo ◽  
Zhihong Mei ◽  
Yinghao Yu

ILs@MIL-100 composites were synthesized via the wet impregnation method and applied in deep oxidative desulfurization of gasoline with high efficiency.


RSC Advances ◽  
2016 ◽  
Vol 6 (112) ◽  
pp. 111190-111196 ◽  
Author(s):  
Xinye Qian ◽  
Lina Jin ◽  
Lin Zhu ◽  
Shanshan Yao ◽  
Dewei Rao ◽  
...  

A CeO2 nanodots decorated ketjen black composite was fabricated by a simple wet impregnation method and used as the host of sulfur for a lithium–sulfur battery.


2010 ◽  
Vol 75 (8) ◽  
pp. 1115-1124 ◽  
Author(s):  
Gheorghiţa Mitran ◽  
Ioan-Cezar Marcu ◽  
Adriana Urdă ◽  
Ioan Săndulescu

Vanadium-molybdenum oxides supported on Al2O3, CeO2 and TiO2 were prepared by a ?wet? impregnation method, characterized using DRX, N2 adsorption, UV-Vis spectroscopy, electrical conductivity measurements and tested in the oxidative dehydrogenation of isobutane. The catalytic performance in the oxidative dehydrogenation of isobutane at 400-550?C depended on the nature of support and on the content of VMoO species on the support. The catalysts supported on alumina were more active and selective than those supported on ceria and titania.


Sign in / Sign up

Export Citation Format

Share Document