scholarly journals Synthesis of HZSM-5 Rich in Paired Al and Its Catalytic Performance for Propane Aromatization

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 622
Author(s):  
Dezhi Shi ◽  
Sen Wang ◽  
Hao Wang ◽  
Pengfei Wang ◽  
Li Zhang ◽  
...  

A series of HZSM-5 catalysts with similar Si/AlF mole ratio, textual properties and morphology, but different contents of AlF pairs, were synthesized by controlling the Na/Al molar ratios in the precursor gel and used for propane aromatization. It is shown that the catalyst with a Na/Al molar ratio of 0.8 in the synthetic gel possesses the highest paired AlF concentration (64.4%) and shows higher propane conversion (38.2%) and aromatics selectivity (19.7 wt.%). Propane pulse experiments, micro reactor activity estimation, Operando diffuse reflectance ultraviolet-visible (DR UV-vis) spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) analysis of coke species deposited on the catalysts provide evidence that AlF pairs in the ZSM-5 framework promote oligomerization and cyclization reactions of olefins, and then produce more aromatics. Density Functional Theory (DFT) calculations demonstrate that the cyclization of olefins and hydride transfer reaction occurring on AlF pairs in HZSM-5 zeolite show a lower free energy barrier and a higher rate constant than those on single AlF, indicating that the structure of AlF pairs in the HZSM-5 zeolite has a stronger electrostatic stabilization effect on the transition states than that of single AlF.

2018 ◽  
Vol 17 (08) ◽  
pp. 1850050 ◽  
Author(s):  
Qiuhan Luo ◽  
Gang Li ◽  
Junping Xiao ◽  
Chunhui Yin ◽  
Yahui He ◽  
...  

Sulfonylureas are an important group of herbicides widely used for a range of weeds and grasses control particularly in cereals. However, some of them tend to persist for years in environments. Hydrolysis is the primary pathway for their degradation. To understand the hydrolysis behavior of sulfonylurea herbicides, the hydrolysis mechanism of metsulfuron-methyl, a typical sulfonylurea, was investigated using density functional theory (DFT) at the B3LYP/6-31[Formula: see text]G(d,p) level. The hydrolysis of metsulfuron-methyl resembles nucleophilic substitution by a water molecule attacking the carbonyl group from aryl side (pathway a) or from heterocycle side (pathway b). In the direct hydrolysis, the carbonyl group is directly attacked by one water molecule to form benzene sulfonamide or heterocyclic amine; the free energy barrier is about 52–58[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. In the autocatalytic hydrolysis, with the second water molecule acting as a catalyst, the free energy barrier, which is about 43–45[Formula: see text]kcal[Formula: see text]mol[Formula: see text], is remarkably reduced by about 11[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is obvious that water molecules play a significant catalytic role during the hydrolysis of sulfonylureas.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 926
Author(s):  
Malose J. Mphahlele ◽  
Eugene E. Onwu ◽  
Marole M. Maluleka

The conformations of the title compounds were determined in solution (NMR and UV-Vis spectroscopy) and in the solid state (FT-IR and XRD), complemented with density functional theory (DFT) in the gas phase. The nonequivalence of the amide protons of these compounds due to the hindered rotation of the C(O)–NH2 single bond resulted in two distinct resonances of different chemical shift values in the aromatic region of their 1H-NMR spectra. Intramolecular hydrogen bonding interactions between the carbonyl oxygen and the sulfonamide hydrogen atom were observed in the solution phase and solid state. XRD confirmed the ability of the amide moiety of this class of compounds to function as a hydrogen bond acceptor to form a six-membered hydrogen bonded ring and a donor simultaneously to form intermolecular hydrogen bonded complexes of the type N–H···O=S. The distorted tetrahedral geometry of the sulfur atom resulted in a deviation of the sulfonamide moiety from co-planarity of the anthranilamide scaffold, and this geometry enabled oxygen atoms to form hydrogen bonds in higher dimensions.


2019 ◽  
Vol 21 (46) ◽  
pp. 25743-25748
Author(s):  
Yong-Chao Rao ◽  
Xiang-Mei Duan

The catalytic performance of Pd/Pt embedded planar carbon nitride for CO oxidation has been investigated via spin-polarized density functional theory calculations.


2020 ◽  
Vol 15 (2) ◽  
pp. 490-500
Author(s):  
Neha Neha ◽  
Ram Prasad ◽  
Satya Vir Singh

A series of nickel-cobalt bimetal oxides in varying molar ratios and its single metal oxides were synthesized by reactive calcination of coprecipitated basic-carbonates. Several characterization techniques, such as: Bruneuer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR), and Hydrogen Temperature Programmed Reduction (H2-TPR), were performed over the oxides. Activities of oxides were evaluated in methane total oxidation in the presence or the absence of CO. The best catalytic performance was observed over NiCo catalyst with a Ni/Co molar ratio of 1:1, and the complete conversion of CO-CH4 mixture was achieved at 390 °C. Moreover, the presence of carbon monoxide improves CH4 total oxidation over nickel-cobalt mixed oxides. Structural analysis reveals that the insertion of nickel into the spinel lattice of cobalt oxide causes the structural disorder, which probably caused the increase of the amount of octahedrally coordinated divalent nickel cations that are responsible for catalytic activity. Stability of the best-performed catalyst has been tested in the two conditions, showing remarkable long-term stability and thermal stability, however, showed deactivation after thermally ageing at 700 °C. Copyright © 2020 BCREC Group. All rights reserved 


RSC Advances ◽  
2017 ◽  
Vol 7 (55) ◽  
pp. 34497-34507 ◽  
Author(s):  
Tahereh Taherzadeh Lari ◽  
Ali Akbar Mirzaei ◽  
Hossein Atashi

The effect of Co/Ce molar ratios on the catalytic performance in FTS.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2822
Author(s):  
Agnieszka Kudelko ◽  
Monika Olesiejuk ◽  
Marcin Luczynski ◽  
Marcin Swiatkowski ◽  
Tomasz Sieranski ◽  
...  

Three series of azo dyes derived from 2-amino-5-aryl-1,3,4-thiadiazoles and aniline, N,N-dimethylaniline and phenol were synthesized in high yields by a conventional diazotization-coupling sequence. The chemical structures of the prepared compounds were confirmed by 1H-NMR, 13C-NMR, IR, UV-Vis spectroscopy, mass spectrometry and elemental analysis. In addition, the X-ray single crystal structure of a representative azo dye was presented. For explicit determination of the influence of a substituent on radiation absorption in UV-Vis range, time-dependent density functional theory calculations were performed.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4191 ◽  
Author(s):  
Agnieszka Gonciarz ◽  
Robert Pich ◽  
Krzysztof Artur Bogdanowicz ◽  
Beata Jewloszewicz ◽  
Wojciech Przybył ◽  
...  

In this paper, four new aromatic imines containing at least one thiazole-based heterocycle were analyzed in detail by UV–Vis spectroscopy, taking into consideration their chemical structures and interactions with PTB7, a known polymeric electron donor widely used in bulk heterojunction organic solar cells. It is demonstrated that the absorption spectra of the investigated active compositions can be modified not only by changing the chemical structure of imine, but also via formulations with PTB7. For all investigated imines and PTB7:imine compositions, calibration curves were obtained in order to find the optimum concentration in the composition with PTB7 for expansion and optimization of absorption spectra. All imines and PTB7:imine compositions were investigated in 1,2-dichlorobenzene by UV–Vis spectroscopy in various concentrations, monitoring the changes in the π–π* and n–π* transitions. With increasing imine concentrations, we did not observe changes in absorption maxima, while with increasing imine concentrations, a hypochromic effect was observed. Finally, we could conclude that all investigated compositions exhibited wide absorptions of up to 800 nm and isosbestic points in the range of 440–540 nm, confirming changes in the macromolecular organization of the tested compounds. The theoretical calculations of their vibration spectra (FTIR) and LUMO–HOMO levels by Density Functional Theory (DFT) methods are also provided. Finally, IR thermal images were measured for organic devices based on imines and the imine:PTB7 composite.


2019 ◽  
Vol 43 (1) ◽  
pp. 348-355 ◽  
Author(s):  
Nguyet N. T. Pham ◽  
Jong S. Park ◽  
Hee-Tak Kim ◽  
Hyoung-Juhn Kim ◽  
Young-A Son ◽  
...  

The thermodynamic free-energy diagrams predict that MnPc/GQD is more active toward ORR than the isolated MnPc, clearly highlighting the effect of the GQD matrix on ORR activity from a thermodynamic perspective.


Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 52
Author(s):  
Jerwin Jay E. Taping ◽  
Junie B. Billones ◽  
Voltaire G. Organo

Nickel(II) complexes of mono-functionalized pyridine-tetraazamacrocycles (PyMACs) are a new class of catalysts that possess promising activity similar to biological peroxidases. Experimental studies with ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), substrate) and H2O2 (oxidant) proposed that hydrogen-bonding and proton-transfer reactions facilitated by their pendant arm were responsible for their catalytic activity. In this work, density functional theory calculations were performed to unravel the influence of pendant arm functionalization on the catalytic performance of Ni(II)–PyMACs. Generated frontier orbitals suggested that Ni(II)–PyMACs activate H2O2 by satisfying two requirements: (1) the deprotonation of H2O2 to form the highly nucleophilic HOO−, and (2) the generation of low-spin, singlet state Ni(II)–PyMACs to allow the binding of HOO−. COSMO solvation-based energies revealed that the O–O Ni(II)–hydroperoxo bond, regardless of pendant arm type, ruptures favorably via heterolysis to produce high-spin (S = 1) [(L)Ni3+–O·]2+ and HO−. Aqueous solvation was found crucial in the stabilization of charged species, thereby favoring the heterolytic process over homolytic. The redox reaction of [(L)Ni3+–O·]2+ with ABTS obeyed a 1:2 stoichiometric ratio, followed by proton transfer to produce the final intermediate. The regeneration of Ni(II)–PyMACs at the final step involved the liberation of HO−, which was highly favorable when protons were readily available or when the pKa of the pendant arm was low.


Sign in / Sign up

Export Citation Format

Share Document