scholarly journals CuAlCe Oxides Issued from Layered Double Hydroxide Precursors for Ethanol and Toluene Total Oxidation

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 870
Author(s):  
Hadi Dib ◽  
Rebecca El Khawaja ◽  
Guillaume Rochard ◽  
Christophe Poupin ◽  
Stéphane Siffert ◽  
...  

CuAlCe oxides were obtained from hydrotalcite-type precursors by coprecipitation using a M2+/M3+ ratio of 3. The collapse of the layered double hydroxide structure following the thermal treatment leads to the formation of mixed oxides (CuO and CeO2). The catalytic performance of the copper-based catalysts was evaluated in the total oxidation of two Volatile Organic Compounds (VOCs): ethanol and toluene. XRD, SEM Energy-Dispersive X-ray Spectrometry (EDX), H2-temperature programmed reduction (TPR) and XPS were used to characterize the physicochemical properties of the catalysts. A beneficial effect of combining cerium with CuAl-O oxides in terms of redox properties and the abatement of the mentioned VOCs was demonstrated. The sample with the highest content of Ce showed the best catalytic properties, which were mainly related to the improvement of the reducibility of the copper species and their good dispersion on the surface. The presence of a synergetic effect between the copper and cerium elements was also highlighted.

2007 ◽  
Vol 61 (2) ◽  
Author(s):  
Z. Mikulová ◽  
P. Čuba ◽  
J. Balabánová ◽  
T. Rojka ◽  
F. Kovanda ◽  
...  

AbstractThe effect of hydrothermal treatment on properties (crystallinity, porous structure, reducibility, acidity, basicity, and catalytic activity and selectivity in toluene and ethanol total oxidation) of Ni—Al layered double hydroxide precursors and related mixed oxides was examined. The hydrothermal treatment increased considerably both the content of crystalline phase and LDH crystallite size. On the other hand, only a slight effect of the precursor hydrothermal treatment on crystallinity of the related Ni—Al mixed oxides obtained by calcination at 450°C was observed. The reducibility of NiO particles appeared to be hindered considerably compared to the reducibility of pure NiO. Catalytic activity of the Ni—Al mixed oxides prepared from the precursors hydrothermally treated for a short time (4 h) was the highest. The highest amount of acetaldehyde formed during the total oxidation of ethanol, i.e. the worst selectivity was found for the calcined Ni—Al LDH without hydrothermal treatment.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4534
Author(s):  
Miguel Jose Marin Figueredo ◽  
Clarissa Cocuzza ◽  
Samir Bensaid ◽  
Debora Fino ◽  
Marco Piumetti ◽  
...  

A set of manganese oxide catalysts was synthesized via two preparation techniques: solution combustion synthesis (Mn3O4/Mn2O3-SCS and Mn2O3-SCS) and sol-gel synthesis (Mn2O3-SG550 and Mn2O3-SG650). The physicochemical properties of the catalysts were studied by means of N2-physisorption at −196 °C, X-ray powder diffraction, H2 temperature-programmed reduction (H2-TPR), soot-TPR, X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM). The high catalytic performance of the catalysts was verified in the oxidation of Volatile Organic Compounds (VOC) probe molecules (ethene and propene) and carbon soot in a temperature-programmed oxidation setup. The best catalytic performances in soot abatement were observed for the Mn2O3-SG550 and the Mn3O4/Mn2O3-SCS catalysts. The catalytic activity in VOC total oxidation was effectively correlated to the enhanced low-temperature reducibility of the catalysts and the abundant surface Oα-species. Likewise, low-temperature oxidation of soot in tight contact occurred over the Mn2O3-SG550 catalyst and was attributed to high amounts of surface Oα-species and better surface reducibility. For the soot oxidation in loose contact, the improved catalytic performance of the Mn3O4/Mn2O3-SCS catalyst was attributed to the beneficial effects of both the morphological structure that—like a filter—enhanced the capture of soot particles and to a probable high amount of surface acid-sites, which is characteristic of Mn3O4 catalysts.


2020 ◽  
Vol 15 (2) ◽  
pp. 490-500
Author(s):  
Neha Neha ◽  
Ram Prasad ◽  
Satya Vir Singh

A series of nickel-cobalt bimetal oxides in varying molar ratios and its single metal oxides were synthesized by reactive calcination of coprecipitated basic-carbonates. Several characterization techniques, such as: Bruneuer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR), and Hydrogen Temperature Programmed Reduction (H2-TPR), were performed over the oxides. Activities of oxides were evaluated in methane total oxidation in the presence or the absence of CO. The best catalytic performance was observed over NiCo catalyst with a Ni/Co molar ratio of 1:1, and the complete conversion of CO-CH4 mixture was achieved at 390 °C. Moreover, the presence of carbon monoxide improves CH4 total oxidation over nickel-cobalt mixed oxides. Structural analysis reveals that the insertion of nickel into the spinel lattice of cobalt oxide causes the structural disorder, which probably caused the increase of the amount of octahedrally coordinated divalent nickel cations that are responsible for catalytic activity. Stability of the best-performed catalyst has been tested in the two conditions, showing remarkable long-term stability and thermal stability, however, showed deactivation after thermally ageing at 700 °C. Copyright © 2020 BCREC Group. All rights reserved 


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 613
Author(s):  
Hussein Mahdi S. Al-Aani ◽  
Mihaela M. Trandafir ◽  
Ioana Fechete ◽  
Lucia N. Leonat ◽  
Mihaela Badea ◽  
...  

To improve the catalytic performance of an active layered double hydroxide (LDH)-derived CuCeMgAlO mixed oxide catalyst in the total oxidation of methane, it was promoted with different transition-metal cations. Thus, two series of multicationic mixed oxides were prepared by the thermal decomposition at 750 °C of their corresponding LDH precursors synthesized by coprecipitation at constant pH of 10 under ambient atmosphere. The first series of catalysts consisted of four M(3)CuCeMgAlO mixed oxides containing 3 at.% M (M = Mn, Fe, Co, Ni), 15 at.% Cu, 10 at.% Ce (at.% with respect to cations), and with Mg/Al atomic ratio fixed to 3. The second series consisted of four Co(x)CuCeMgAlO mixed oxides with x = 1, 3, 6, and 9 at.% Co, while keeping constant the Cu and Ce contents and the Mg/Al atomic ratio. All the mixed oxides were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) coupled with X-ray energy dispersion analysis (EDX), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption at −196 °C, temperature-programmed reduction under hydrogen (H2-TPR), and diffuse reflectance UV-VIS spectroscopy (DR UV-VIS), while thermogravimetric and differential thermal analyses (TG-DTG-DTA) together with XRD were used for the LDH precursors. The catalysts were evaluated in the total oxidation of methane, a test reaction for volatile organic compounds (VOC) abatement. Their catalytic performance was explained in correlation with their physicochemical properties and was compared with that of a reference Pd/Al2O3 catalyst. Among the mixed oxides studied, Co(3)CuCeMgAlO was found to be the most active catalyst, with a temperature corresponding to 50% methane conversion (T50) of 438 °C, which was only 19 °C higher than that of a reference Pd/Al2O3 catalyst. On the other hand, this T50 value was ca. 25 °C lower than that observed for the unpromoted CuCeMgAlO system, accounting for the improved performance of the Co-promoted catalyst, which also showed a good stability on stream.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Mohammed H. Al-Hazmi ◽  
Taiwo Odedairo ◽  
Adel S. Al-Dossari ◽  
YongMan Choi

The catalytic performance of MoVMnW mixed oxides was investigated in the oxidative dehydrogenation of ethane at three different reaction temperatures (235, 255, and 275°C) using oxygen as an oxidant. The catalysts were characterized by using X-ray diffraction, temperature-programmed reduction, and scanning electron microscopy. The MoVMnW mixed oxide catalyst showed the 70–90% of ethylene selectivity at the reaction temperatures. However, a significant decrease in the selectivity of ethylene was observed by increasing the reaction temperature from 235°C to 275°C.


2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Małgorzata Szynkowska ◽  
Aneta Węglińska ◽  
Elżbieta Wojciechowska ◽  
Tadeusz Paryjczak

AbstractCommercial hopcalite calcined at different temperatures and hopcalite modified with noble metals (Pt, Pd, and Au) were studied in oxidation of thiophene. Surface and bulk properties of catalysts were studied using temperature-programmed reduction (TPRH2), X-ray diffraction method (XRD) and thermal analysis (TG-DTA-MS). It was shown that calcined samples displayed higher activity in comparison with commercial untreated hopcalite; however, a lower temperature of calcination was favourable. High temperature of thermal treatment induced an increase in the crystallinity and a decrease in the surface area of the samples, and, as a consequence, the loss of catalysts activity. Moreover, marked improvement in the catalytic performance of platinum and palladium modified catalysts in relation to base hopcalite was observed. The obtained results indicate that the higher activity of samples containing Pt and Pd was accompanied by better reducibility of the catalysts.


2022 ◽  
Vol 9 ◽  
Author(s):  
Lada Dubnová ◽  
Rostislav Daňhel ◽  
Vendula Meinhardová ◽  
Valeriia Korolova ◽  
Lucie Smoláková ◽  
...  

A memory effect is the ability to restore the original, lamellar layered double hydroxide structure. Herein, we have described 1) the changes in the structural and basic properties of ZnAl mixed oxides during their transformation into ZnAl-reconstructed LDHs (RE-LDHs); 2) the extraordinary properties of ZnAl RE-LDHs compared to the original ZnAl LDHs; and 3) the changes of basic properties during the interaction of ZnAl RE-LDHs with atmospheric CO2. Aldol condensation was selected as probe reaction to prove the catalytic potential of ZnAl RE-LDHs. We have described a target method for preparing ZnAl RE-LDHs with a large number of basic sites. ZnAl RE-LDHs possess significantly higher furfural conversion in the aldol condensation of furfural than MOs. The structural, textural, and basic properties of the studied materials were described by temperature-programmed analysis, X-ray diffraction, N2 adsorption, temperature-programmed desorption of CO2, and in-situ diffuse reflectance spectroscopy.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Tadej Žumbar ◽  
Alenka Ristić ◽  
Goran Dražić ◽  
Hristina Lazarova ◽  
Janez Volavšek ◽  
...  

The structure–property relationship of catalytic supports for the deposition of redox-active transition metals is of great importance for improving the catalytic efficiency and reusability of the catalysts. In this work, the role of alumina support precursors of Cu-Fe/Al2O3 catalysts used for the total oxidation of toluene as a model volatile organic air pollutant is elucidated. Surface characterization of the catalysts revealed that the surface area, pore volume and acid site concentration of the alumina supports are important but not the determining factors for the catalytic activity of the studied catalysts for this type of reaction. The determining factors are the structural order of the support precursor, the homogeneous distribution of the catalytic sites and reducibility, which were elucidated by XRD, NMR, TEM and temperature programed reduction (TPR). Cu–Fe/Al2O3 prepared from bayerite and pseudoboehmite as highly ordered precursors showed better catalytic performance compared to Cu-Fe/Al2O3 derived from the amorphous alumina precursor and dawsonite. Homogeneous distribution of FexOy and CuOx with defined Cu/Fe molar ratio on the Al2O3 support is required for the efficient catalytic performance of the material. The study showed a beneficial effect of low iron concentration introduced into the alumina precursor during the alumina support synthesis procedure, which resulted in a homogeneous metal oxide distribution on the support.


Sign in / Sign up

Export Citation Format

Share Document