scholarly journals Preparation of Nanoparticle Porous-Structured BiVO4 Photoanodes by a New Two-Step Electrochemical Deposition Method for Water Splitting

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
SocMan Ho-Kimura ◽  
Wasusate Soontornchaiyakul ◽  
Yuichi Yamaguchi ◽  
Akihiko Kudo

In the synthesis method of a BiVO4 photoanode via BiOI flakes, a BiOI film is formed by electrochemical deposition in Step 1, and a vanadium (V) source solution is placed by drop-casting on the BiOI film in Step 2. Following this, BiVO4 particles are converted from the BiOI–(V species) precursors by annealing. However, it is challenging to evenly distribute vanadium species among the BiOI flakes. As a result, the conversion reaction to form BiVO4 does not proceed simultaneously and uniformly. To address this limitation, in Step 2, we developed a new electrochemical deposition method that allowed the even distribution of V2O5 among Bi–O–I flakes to enhance the conversion reaction uniformly. Furthermore, when lactic acid was added to the electrodeposition bath solution, BiVO4 crystals with an increased (040) peak intensity of the X-ray diffractometer (XRD) pattern were obtained. The photocurrent of the BiVO4 photoanode was 2.2 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE) under solar simulated light of 100 mW/cm2 illumination. The Faradaic efficiency of oxygen evolution was close to 100%. In addition, overall water splitting was performed using a Ru/SrTiO3:Rh–BiVO4 photocatalyst sheet prepared by the BiVO4 synthesis method. The corresponding hydrogen and oxygen were produced in a 2:1 stoichiometric ratio under visible light irradiation.

2009 ◽  
Vol 95 (8) ◽  
pp. 083107 ◽  
Author(s):  
Lixiang Wang ◽  
Gang Cheng ◽  
Xiaohong Jiang ◽  
Shujie Wang ◽  
Xingtang Zhang ◽  
...  

2021 ◽  
pp. 105678952199187
Author(s):  
Hehua Zhu ◽  
Qing Chen ◽  
J Woody Ju ◽  
Zhiguo Yan ◽  
Zhengwu Jiang

The electrochemical deposition method is a promising approach to repair the deteriorated concrete in the aqueous environment. In this paper, a continuum damage-healing framework is presented for the electrochemical deposition method based on the multi-field coupling growth process of the electrochemical deposition products. The ion transportation and the electrode reactions are characterized by employing the Nernst-Planck equation and the current conservation equation. The level set method is adopted to capture the growth of the deposition products. Based on the deposition process, a new empirical healing law is presented, with which a new continuum damage-healing framework is presented for electrochemical deposition method. Numerical examples are conducted by applying the presented framework to the damaged cementitious composite under the tensile loadings. The presented framework is compared with the classic continuum damage-healing theory and the experimental data. The results show that the presented models can describe the electrochemical deposition method induced damage-healing for the cementitious composite. Furthermore, the effects of the healing time, the solution concentration and the external voltage on the damage-healing behaviors are investigated based on our proposed framework.


2020 ◽  
Vol 29 (9) ◽  
pp. 1361-1378 ◽  
Author(s):  
Q Chen ◽  
HH Zhu ◽  
JW Ju ◽  
HX Li ◽  
ZW Jiang ◽  
...  

The (micro-) cracks or (micro-) voids will lead to the damage of concrete material. A stochastic micromechanical framework is proposed to investigate the damage healing of the unsaturated concrete with the electrochemical deposition method. Stochastic micromechanical representations are presented based on the material’s random microstructures. Differential scheme-based multilevel homogenization procedures are proposed to quantitatively predict the effective properties of the repaired concrete. The probability density functions are obtained for the material’s effective properties with an efficient stochastic simulation framework, which is composed of the univariate approximation for the multivariate function, Newton interpolations and Monte Carlo simulations. Numerical examples are employed to verify the proposed stochastic micromechanical framework, which indicates that the presented framework is computationally efficient and capable of describing the electrochemical deposition method healing process for the unsaturated concrete considering the material’s inherent randomness. Finally, the influences of the saturation degrees and the equivalent aspect ratios on the probabilistic behavior of the repaired concrete are discussed on the basis of the proposed models.


2018 ◽  
Vol 27 (9) ◽  
pp. 1307-1324 ◽  
Author(s):  
Qing Chen ◽  
Zhengwu Jiang ◽  
Hehua Zhu ◽  
JW Ju ◽  
Zhiguo Yan ◽  
...  

Most concrete structures repaired by the electrochemical deposition method are not fully saturated and the healing interfaces are not always perfect in reality. To demonstrate these issues, micromechanical models are presented for unsaturated concrete repaired by electrochemical deposition method with the healing interfacial transition zone based on our latest work. The repaired unsaturated concrete is represented as a multiphase composite made up of the water, unsaturated pores, intrinsic concrete, deposition products and the healing interfacial transition zone between the latter two components. The equivalent particle, matrix and composite for repaired unsaturated concrete are obtained by modifying the differential-scheme and the generalized self-consistent method. Modifications are utilized to rationalize the differential-scheme based estimations by taking into the water (including further hydration and viscosity effects), interfacial transition zone and the shapes of the pores into considerations. Furthermore, our predictions are compared with those of the existing models and available experimental results, thus illustrating the feasibility and capability of the proposed micromechanical framework.


Sign in / Sign up

Export Citation Format

Share Document