scholarly journals Polyoxometalate Dicationic Ionic Liquids as Catalyst for Extractive Coupled Catalytic Oxidative Desulfurization

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 356
Author(s):  
Jingwen Li ◽  
Yanwen Guo ◽  
Junjun Tan ◽  
Bing Hu

Wettability is an important factor affecting the performance of catalytic oxidative desulfurization. In order to develop an efficient catalyst for the extractive coupled catalytic oxidative desulfurization (ECODS) of fuel oil by H2O2 and acetonitrile, a novel family of imidazole-based polyoxometalate dicationic ionic liquids (POM-DILs) [Cn(MIM)2]PW12O40 (n = 2,4,6) was synthesized by modifying phosphotungstic acid (H3PW12O40) with double imidazole ionic liquid. These kinds of catalysts have good dispersity in oil phase and H2O2, which is conducive to the deep desulfurization of fuel oil. The catalytic performance of the catalysts was studied under different conditions by removing aromatic sulfur compound dibenzothiophene (DBT) from model oil. Results showed that [C2(MIM)2]PW12O40 had excellent desulfurization efficiency, and more than 98% of DBT was removed under optimum conditions. In addition, it also exhibited good recyclability, and activity with no significant decline after seven reaction cycles. Meanwhile, dibenzothiophene sulfone (DBTO2), the only oxidation product of DBT, was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), and a possible mechanism of the ECODS process was proposed.

2019 ◽  
Vol 43 (48) ◽  
pp. 19232-19241
Author(s):  
Tao Wang ◽  
Wen-hui Yu ◽  
Tan-xiangning Li ◽  
Yu-ting Wang ◽  
Jun-jun Tan ◽  
...  

Deep desulfurization of magnetic ionic liquids [C4(mim)2]Cl2/2FeCl3.


Environments ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 97
Author(s):  
Chiau Yuan Lim ◽  
Mohd Faridzuan Majid ◽  
Sarrthesvaarni Rajasuriyan ◽  
Hayyiratul Fatimah Mohd Zaid ◽  
Khairulazhar Jumbri ◽  
...  

Extractive catalytic oxidative desulfurization (ECODS) is the one of the recent methods used in fuel desulfurization which involved the use of catalyst in the oxidative desulfurization of diesel fuel. This study is aimed to test the effectiveness of synthesized choline chloride (ChCl) based deep eutectic solvent (DES) in fuel desulfurization via ECODS method, with the presence of graphene oxide (GO) as catalyst and hydrogen peroxide (H2O2) as oxidant. In this study, 16 DESs based on choline chloride were synthesized using glycerol (GLY), ethylene glycol (EG), tetraethylene glycol (TEG) and polyethylene glycol (PEG). The characterization of the synthesized DES was carried out via Fourier transform infrared spectroscopy (FTIR) analysis, density, and viscosity determination. According to the screening result, ChCl-PEG (1:4) was found to be the most effective DES for desulfurization using ECODS method, with a removal of up to 47.4% of sulfur containing compounds in model oil in just 10 min per cycle after the optimization of the reaction parameters, and up to 95% desulfurization efficiency could be achieved by six cycles of desulfurization. It is found that the addition of GO as catalyst does not increase the desulfurization performance drastically; hence, future studies for the desulfurization performance of DESs made up from ChCl and PEG and its derivatives can be done simply by using extraction desulfurization (EDS) method instead of ECODS method, for cost reduction purpose and easier regulation of DES waste into environment.


RSC Advances ◽  
2016 ◽  
Vol 6 (21) ◽  
pp. 17036-17045 ◽  
Author(s):  
Lu Qiu ◽  
Yan Cheng ◽  
Chunping Yang ◽  
Guangming Zeng ◽  
Zhiyong Long ◽  
...  

In this paper, the performance of catalytic oxidative desulfurization from model oil was studied using a catalyst of molybdenum supported on modified medicinal stone (Mo/MMS).


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 229 ◽  
Author(s):  
Muhammad Hossain ◽  
Hoon Park ◽  
Hang Choi

The production of green fuel oil is of the utmost importance for maintaining a healthy life and environment in the current world. Effective and complete removal of sulfur refractory compounds (such as 4,6-dimethyldibenzothiophene and other alkyl-substituted thiophene derivatives) from fuel oil is essential to meet the new requirements of sulfur standards. Several techniques have been proposed for desulfurization of fuel oil, such as hydrodesulfurization (HDS), selective adsorption, extractive distillation, biodesulfurization, and oxidative desulfurization (ODS). The removal of sulfur by the HDS process requires higher investment costs, high reaction temperature (up to 400 °C), and high pressure (up to 100 atm) reactors. On the other hand, studies have shown that the ODS process is remarkably successful in the removal of sulfur under mild reaction conditions. This review article presents a comparative analysis of various existing catalytic oxidation techniques: acetic acid/formic acid catalytic oxidation, heteropolyacid (HPA) catalytic oxidation, ionic liquid catalytic oxidation, molecular sieve catalytic oxidation, polyoxometalates catalytic oxidation, titanium catalytic oxidation, and ultrasound-assisted oxidation systems, as well as discusses research gaps, and proposes important recommendations for future challenges.


Fuel ◽  
2015 ◽  
Vol 147 ◽  
pp. 195-202 ◽  
Author(s):  
Jianghua Qiu ◽  
Guanghui Wang ◽  
Yuqin Zhang ◽  
Danlin Zeng ◽  
Yang Chen

RSC Advances ◽  
2017 ◽  
Vol 7 (85) ◽  
pp. 54266-54276 ◽  
Author(s):  
Haiyan Ji ◽  
Haitao Ju ◽  
Rong Lan ◽  
Peiwen Wu ◽  
Jia Sun ◽  
...  

An ionic liquid modified hexagonal boron nitride was developed for preparation of a supported catalyst with enhanced stability and excellent catalytic performance in catalytic oxidative desulfurization.


KIMIKA ◽  
2013 ◽  
Vol 24 (1) ◽  
pp. 2-7
Author(s):  
Harold Henrison C. Chiu ◽  
Susan D. Arco ◽  
Zhang Chun Ping ◽  
Nelson R. Villarante

The oxidative desulfurization of model oil (hexane solution of thiophene) was carried out at room temperature in a two-step method involving: 1) the acetic acid catalyzed oxidation of thiophene with hydrogen peroxide and 2) the subsequent extraction of the oxidized products with  three  1-alkyl-3-methylimidazolium  bromide  [RMIM]Br  ionic  liquids  of  varying  alkyl substituent R chain length  (R: C2, C4,  C6) and with acetonitrile as control. For purposes of comparison,  a  non-oxidative  extractive  desulfurization  of  model  oil  with  the  above  ionic liquid and with acetonitrile was also performed.  The thiophene extraction efficiencies of the ionic liquids and that of the control in both the oxidative and non-oxidative procedures were determined  by  means  of  gas  chromatography.  The  ionic  liquid  of  the  shortest  alkyl substituent chain length (R: C2), [EMIM] Br exhibited the highest extraction efficiency in the oxidative desulfurization of the model  oil; the extraction efficiency of [EMIM] Br was also observed  to  exceed  that  of  acetonitrile.  In  general,  the  oxidative  desulfurization  with  the above [RMIM]Br’s is apparently a more efficient method of thiophene removal from the model oil as compared to a non-oxidative procedure with the same extraction solvents. The extraction efficiency of [RMIM]Br’s was observed to decrease with the lengthening of the alkyl  substituent  chain.  The  same  trend  is  observed  in  the  non-oxidative  extractive desulfurization of the model oil. Recyclability analysis of [EMIM]Br showed that [EMIM]Br can be recycled thrice with no significant decrease in extraction efficiency.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 639 ◽  
Author(s):  
Yunlei Li ◽  
Yanjie Zhang ◽  
Panfeng Wu ◽  
Caiting Feng ◽  
Ganglin Xue

Polyoxometalates based ionic liquids (POM-ILs) exhibit a high catalytic activity in oxidative desulfurization. In this paper, four new POM-IL hybrids based on transition metal mono-substituted Keggin-type phosphomolybdates, [Bmim]5[PMo11M(H2O)O39] (Bmim = 1-butyl 3-methyl imidazolium; M = Co2+, Ni2+, Zn2+, and Mn2+), have been synthesized and used as catalysts for the oxidation/extractive desulfurization of model oil, in which ILs are used as the extraction solvent and H2O2 as an oxidant under very mild conditions. The factors that affected the desulfurization efficiency were studied and the optimal reaction conditions were obtained. The results showed that the [Bmim]5[PMo11Co(H2O)O39] catalyst demonstrated the best catalytic activity, with sulfur-removal of 99.8%, 85%, and 63% for dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT), and benzothiophene (BT), respectively, in the case of extraction combining with a oxidative desulfurization system under optimal reaction conditions (5 mL model oil (S content 500 ppm), n(catalyst) = 4 μmol, n(H2O2)/n(Substrate) = 5, T = 50 °C for 60 min with [Omim]BF4 (1 mL) as the extractant). The catalyst can be recycled at least 8 times, and still has stability and high catalytic activity for consecutive desulfurization. Probable reaction mechanisms have been proposed for catalytic oxidative/extractive desulfurization.


Sign in / Sign up

Export Citation Format

Share Document