scholarly journals A Comprehensive Review on Catalytic Oxidative Desulfurization of Liquid Fuel Oil

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 229 ◽  
Author(s):  
Muhammad Hossain ◽  
Hoon Park ◽  
Hang Choi

The production of green fuel oil is of the utmost importance for maintaining a healthy life and environment in the current world. Effective and complete removal of sulfur refractory compounds (such as 4,6-dimethyldibenzothiophene and other alkyl-substituted thiophene derivatives) from fuel oil is essential to meet the new requirements of sulfur standards. Several techniques have been proposed for desulfurization of fuel oil, such as hydrodesulfurization (HDS), selective adsorption, extractive distillation, biodesulfurization, and oxidative desulfurization (ODS). The removal of sulfur by the HDS process requires higher investment costs, high reaction temperature (up to 400 °C), and high pressure (up to 100 atm) reactors. On the other hand, studies have shown that the ODS process is remarkably successful in the removal of sulfur under mild reaction conditions. This review article presents a comparative analysis of various existing catalytic oxidation techniques: acetic acid/formic acid catalytic oxidation, heteropolyacid (HPA) catalytic oxidation, ionic liquid catalytic oxidation, molecular sieve catalytic oxidation, polyoxometalates catalytic oxidation, titanium catalytic oxidation, and ultrasound-assisted oxidation systems, as well as discusses research gaps, and proposes important recommendations for future challenges.

2021 ◽  
Author(s):  
Fangyuan He ◽  
Heyi Zhang ◽  
Xiaonan Li ◽  
Jie Yang ◽  
Wenqing Ma ◽  
...  

In this work, the first time we selected a size-matched polyoxometalate α-Mo8O26, and successfully prepared Mo8-UiO-66 as a catalyst for extractive and catalytic oxidative desulfurization systems (ECODS) with double active...


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 356
Author(s):  
Jingwen Li ◽  
Yanwen Guo ◽  
Junjun Tan ◽  
Bing Hu

Wettability is an important factor affecting the performance of catalytic oxidative desulfurization. In order to develop an efficient catalyst for the extractive coupled catalytic oxidative desulfurization (ECODS) of fuel oil by H2O2 and acetonitrile, a novel family of imidazole-based polyoxometalate dicationic ionic liquids (POM-DILs) [Cn(MIM)2]PW12O40 (n = 2,4,6) was synthesized by modifying phosphotungstic acid (H3PW12O40) with double imidazole ionic liquid. These kinds of catalysts have good dispersity in oil phase and H2O2, which is conducive to the deep desulfurization of fuel oil. The catalytic performance of the catalysts was studied under different conditions by removing aromatic sulfur compound dibenzothiophene (DBT) from model oil. Results showed that [C2(MIM)2]PW12O40 had excellent desulfurization efficiency, and more than 98% of DBT was removed under optimum conditions. In addition, it also exhibited good recyclability, and activity with no significant decline after seven reaction cycles. Meanwhile, dibenzothiophene sulfone (DBTO2), the only oxidation product of DBT, was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), and a possible mechanism of the ECODS process was proposed.


2012 ◽  
Vol 512-515 ◽  
pp. 2110-2114 ◽  
Author(s):  
Jiang Hua Qiu ◽  
Guang Hui Wang ◽  
Yun Cheng Bao ◽  
Yu Qin Zhang ◽  
Dan Lin Zeng

Phosphomolybdic acid loaded on SiO2 has been prepared as the catalyst by the sol-gel method. The catalysts were evaluated for the oxidative desulfurization of model fuel oil using hydrogen peroxide as an oxidant. Results show that the calcined temperature, Mo/Si molar ratio, catalyst dosage, H2O2 dosage, reaction temperature and reaction time affect the desulfurization rates. The oxidative reactions fit apparent first-order kinetics, and the apparent activation energies of BT and DBT are 51.87 KJ/mol and 25.79 KJ/mol, respectively.


2019 ◽  
Vol 43 (48) ◽  
pp. 19232-19241
Author(s):  
Tao Wang ◽  
Wen-hui Yu ◽  
Tan-xiangning Li ◽  
Yu-ting Wang ◽  
Jun-jun Tan ◽  
...  

Deep desulfurization of magnetic ionic liquids [C4(mim)2]Cl2/2FeCl3.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 335-341 ◽  
Author(s):  
Jae-Kyu Yang ◽  
Yoon-Young Chang ◽  
Sung-Il Lee ◽  
Hyung-Jin Choi ◽  
Seung-Mok Lee

Iron-coated sand (ICS) prepared by using FeCl3 and Joomoonjin sand widely used in Korea was used in this study. In batch adsorption kinetics, As(V) adsorption onto ICS was completed within 20 minutes, while adsorption of Pb(II), Cd(II), and Cu(II) onto ICS was slower than that of As(V) and strongly depended on initial pH. At pH 3.5, ICS showed a selective adsorption of Pb(II) compared to Cd( II) and Cu(II) . However, above pH 4.5, near complete removal of Pb(II), Cd(II), and Cu(II) was observed through adsorption or precipitation depending on pH. As(V) adsorption onto ICS occurred through an anionic-type and followed a Langmuir-type adsorption behaviour. In column experiments, pH was identified as an important parameter in the breakthrough of As(V). As(V) breakthrough at pH 4.5 was much slower than at pH 9 due to a strong chemical bonding between As(V) and ICS as similar with batch adsorption behaviour. With variation of ICS amounts, the optimum amount of ICS at pH 4.5 was identified as 5.0 grams in this research. At this condition, ICS could be used to treat 200 mg of As(V) with 1 kg of ICS until 50 ppb of As(V) appeared in the effluent. In this research, as a new treatment system, ICS can be potentially used to treat As(V) and cationic heavy metals.


2021 ◽  
Vol 60 (5) ◽  
pp. 2101-2111
Author(s):  
Xu Liu ◽  
Guiqiang Zhangsun ◽  
Yong Zheng ◽  
Shijing Liang ◽  
Yanning Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document