scholarly journals Polyaniline/Ag2S–CdS Nanocomposites as Efficient Electrocatalysts for Triiodide Reduction in Dye-Sensitized Solar Cells

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 507
Author(s):  
Meng Kuo ◽  
Tsung-Chia Cheng ◽  
Huai-Kai Ye ◽  
Tzong-Liu Wang ◽  
Tzu-Ho Wu ◽  
...  

In this study, an Ag2S–CdS nanocomposite (AC11) was prepared through chemical co-precipitation of silver nitrate and cadmium acetate in an aqueous solution of thiourea. We then synthesized PACI, a nanocomposite of polyaniline (PANI) and AC11, through in situ polymerization of aniline in an AC11-containing solution, resulting in uniform embedding of the AC11 nanoparticles in the PANI fibers. Moreover, we synthesized the nanocomposite PACO through deposition of the AC11 nanoparticles on the surface of the PANI fibers. PANI, PACI, and PACO were then spin-coated onto conducting glasses to form PANI-S, PACI-S, and PACO-S counter electrodes, respectively, for dye-sensitized solar cells (DSSCs). Cyclic voltammetry revealed that the electrochemical catalytic activity of the PACI-S electrode was much higher than those of the PANI-S and PACO-S electrodes. Furthermore, the photovoltaic properties of the PACI-S-based DSSC were much better than those of the PANI-S- and PACO-S-based DSSCs. Indeed, the highest short-circuit current density (12.06 mA/cm2), open-circuit voltage (0.72 V), fill factor (0.58), and photoenergy conversion efficiency (5.04%) were those of the DSSC featuring PACI-S as the counter electrode.

2011 ◽  
Vol 306-307 ◽  
pp. 112-115 ◽  
Author(s):  
You Zeng ◽  
Li Jia Zhao ◽  
Ying Zhen ◽  
Fang Xiao Shi ◽  
Yu Tong

Flexible dye-sensitized solar cells (DSCs) were prepared by using carbon nanotube transparent conductive films (CNT-TCFs) as flexible substrates, and their photovoltaic properties were investigated as well. The flexible DSCs show typical photovoltaic characteristics with short-circuit current of 0.78 μA and open-circuit voltage of 1.48 mV, which was strongly influenced by heat-treatment temperature, type of dyes, and electrical resistivity. In light of their lighter weight and higher flexibility than conventional DSCs based on conductive glass substrates, the flexible DSCs have great potential as functional photoelectric components in many fields.


Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 166
Author(s):  
Chi-Feng Lin ◽  
Ting-Hsuan Hsieh ◽  
Yu-Chen Chou ◽  
Pin-Hung Chen ◽  
Ci-Wun Chen ◽  
...  

We developed cobalt and carbon complex materials as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs) to replace conventional platinum (Pt) CEs. Co12 and Co15, both of which are basic cobalt derivatives, showed good redox potential with a suitable open-circuit voltage (VOC); however, their poor electrical conductivity engendered a low short-circuit current (JSC) and fill factor (FF). Mixing them with carbon black (CB) improved the electrical conductivity of the CE; in particular, JSC and FF were considerably improved. Further improvement was achieved by combining cobalt derivatives and CB through thermal sintering to produce a novel CoCB material as a CE. CoCB had good electrical conductivity and electrocatalytic capability, and this further enhanced both JSC and VOC. The optimized device exhibited a power conversion efficiency (PCE) of 7.44%, which was higher than the value of 7.16% for a device with a conventional Pt CE. The conductivity of CoCB could be further increased by mixing it with PEDOT:PSS, a conducting polymer. The device’s JSC increased to 18.65 mA/cm2, which was considerably higher than the value of 14.24 mA/cm2 for the device with Pt CEs. The results demonstrate the potential of the cobalt and carbon complex as a CE for DSSCs.


2007 ◽  
Vol 1013 ◽  
Author(s):  
Kinji Onoda ◽  
Supachai Ngamsinlapasathian ◽  
Takuya Fujieda ◽  
Susumu Yoshikawa

AbstractThe photovoltaic properties of dye-sensitized solar cells (DSCs) based on fluorine doped tin oxide (FTO) and Ti substrates were investigated. The sheet resistances of the substrates were correlated to the photovoltaic properties. The efficiency of the Ti substrate based DSC was higher than that of the FTO substrate based DSC, due to a high fill factor (FF). To minimize the internal resistance of the DSCs, Ti plate was used as a support for nanocrystalline TiO2, because of its low sheet resistance. As the light was absorbed by the electrolyte layer, the incident photon to current efficiency (IPCE) values decreased in the range between 400-600 nm. The electrolyte concentrations were optimized to obtain a higher cell performance. When using an electrolyte composed of 0.02 M I2, 0.2 M LiI, and 0.5 M 4-tert-butylpyridine, an efficiency of 4.98% was obtained for the Ti substrate based DSC with a short circuit current density (Jsc) of 11.25 mAcm-2, an open circuit voltage (Voc) of 0.692 V, and a FF of 0.639. The effect of the cell size on the photovoltaic properties was also investigated. The rate of decrease in a FF and efficiency with increase in the cell size was lower for the Ti substrate based DSCs than the FTO substrate based DSCs. This result indicates that Ti plate is a potential candidate for production of large DSCs.


2018 ◽  
Vol 382 ◽  
pp. 369-373
Author(s):  
Usana Mahanitipong ◽  
Preeyapat Prompan ◽  
Rukkiat Jitchati

The four thiocyanate free ruthenium(II) complexes; [Ru(N^N)2(C^N)]PF6were synthesized and characterized for dye sensitized solar cells (DSSCs). The results showed that the broad absorptions covered the visible region from metal to ligand charge transfer (MLCT) were obtained with the main peaks at 560, 490 and 400 nm. The materials were studied DSSC performance under standard AM 1.5. Compound PP1 showed the power conversion efficiency (PCE) at 3.10%, with a short-circuit photocurrent density (Jsc) of 7.99 mA cm-2, an open-circuit photovoltage (Voc) of 563 mV and a high fill factor (ff) of 0.690.


BIBECHANA ◽  
2015 ◽  
Vol 13 ◽  
pp. 23-28
Author(s):  
Leela Pradhan Joshi

Aluminium doped Zinc Oxide (AZO) seed layers were deposited on Fluorine doped Tin Oxide (FTO) substrates using a spin coating technique. These were then immersed in growth solutions of zinc nitrate, hexamethylenetetramine and distilled water to develop nanoplates of Zinc Oxide (ZnO). The nanostructures of ZnO grown on FTO were studied using x-ray diffraction techniques. Dye-sensitized solar cells (DSSC) were fabricated using two prepared electrodes, one of dye-loaded zinc oxide and another that was platinum coated. The electrolyte used was potassium iodide iodine solution. The performance of the assembled DSCCs was tested by drawing an IV curve. The results showed that the short circuit current and open circuit voltages were about 10 microamperes and 270 millivolts respectively.BIBECHANA 13 (2016) 23-28


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Kambiz Hosseinpanahi ◽  
Mohammad Hossein Abbaspour-Fard ◽  
Javad Feizy ◽  
Mahmood Reza Golzarian

Natural dye extract of the saffron petal, purified by solid-phase extraction (SPE) technique, has been studied as a novel sensitizing dye to fabricate TiO2 nanoparticles-based dye-sensitized solar cells (DSSC). The extract was characterized using ultraviolet–visible (UV–Vis) and Fourier transform infrared (FTIR) spectroscopies to confirm the presence of anthocyanins in saffron petals. The typical current–voltage and the incident photon to current efficiency (IPCE) curves were also provided for the fabricated cell. The saffron petal extract exhibited an open-circuit voltage (Voc) of 0.397 V, short circuit current density (Jsc) of 2.32 mA/cm2, fill factor (FF) of 0.71, and conversion efficiency of 0.66%, which are fairly good in comparison with the other similar natural dye-sensitized solar cells. These are mainly due to the improved charge transfer between the dye extract of saffron petal and the TiO2 anode surface. Considering these results, it can be concluded that the use of saffron petal dye as a sensitizer in DSSC is a promising method for providing clean energy from performance, environmental friendliness, and cost points of view.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2516
Author(s):  
Minseon Kong ◽  
Kyeong Seok Kim ◽  
Nguyen Van Nga ◽  
Yeonju Lee ◽  
Yu Seong Jeon ◽  
...  

The leakage and volatilization of liquid electrolytes limit the commercialization of dye-sensitized solar cells (DSCs). As solid-state (ss) hole-transporting materials, free from leakage and volatilization, biscarbazole-based polymers with different molecular weights (PBCzA-H (21,200 g/mol) and PBCzA-L (2450 g/mol)) were applied in combination with additives to produce ssDSCs. An ssDSC with PBCzA-H showed a better short-circuit current (Jsc), open-circuit voltage (Voc), and fill factor (FF) than a device with PBCzA-L, resulting in 38% higher conversion efficiency. Compared to the PBCzA-L, the PBCzA-H with a higher molecular weight showed faster hole mobility and larger conductivity, leading to elevations in Jsc via rapid hole transport, Voc via rapid hole extraction, and FF via lowered series and elevated shunt resistances. Thus, it is believed that PBCzA-H is a useful candidate for replacing liquid electrolytes.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4181 ◽  
Author(s):  
Mariia Karpacheva ◽  
Vanessa Wyss ◽  
Catherine E. Housecroft ◽  
Edwin C. Constable

By systematic tuning of the components of the electrolyte, the performances of dye-sensitized solar cells (DSCs) with an N-heterocyclic carbene iron(II) dye have been significantly improved. The beneficial effects of an increased Li+ ion concentration in the electrolyte lead to photoconversion efficiencies (PCEs) up to 0.66% for fully masked cells (representing 11.8% relative to 100% set for N719) and an external quantum efficiency maximum (EQEmax) up to approximately 25% due to an increased short-circuit current density (JSC). A study of the effects of varying the length of the alkyl chain in 1-alkyl-3-methylimidazolium iodide ionic liquids (ILs) shows that a longer chain results in an increase in JSC with an overall efficiency up to 0.61% (10.9% relative to N719 set at 100%) on going from n-methyl to n-butyl chain, although an n-hexyl chain leads to no further gain in PCE. The results of electrochemical impedance spectroscopy (EIS) support the trends in JSC and open-circuit voltage (VOC) parameters. A change in the counterion from I− to [BF4]− for 1-propyl-3-methylimidazolium iodide ionic liquid leads to DSCs with a remarkably high JSC value for an N-heterocyclic carbene iron(II) dye of 4.90 mA cm−2, but a low VOC of 244 mV. Our investigations have shown that an increased concentration of Li+ in combination with an optimized alkyl chain length in the 1-alkyl-3-methylimidazolium iodide IL in the electrolyte leads to iron(II)-sensitized DSC performances comparable with those of containing some copper(I)-based dyes.


2014 ◽  
Vol 1008-1009 ◽  
pp. 78-81
Author(s):  
Nair Gomesh ◽  
Z. M. Arief ◽  
Syafinar Ramli ◽  
M Irwanto ◽  
Y. M. Irwan ◽  
...  

Dye Sensitized Solar Cells (DSSC) is another kind of solar cell from the third generation that forms a photovoltaic. DSSC is designed to reduce cost from usage of expensive material in conventional solar panels. The purpose of this project is to fabricate and compare dye sensitized solar cells (DSSC) by using organic dye from blueberry and blue dye from chemical substances. The DSSC is fabricated using ‘Doctor Blade’ method. Results are based on investigating the electrical performance and characteristic of the fabricated TiO2 solar cell based on these comparisons of dyes in order to investigate the potential of organic dyes as a light absorbing mechanism. The required data that is investigated are the open circuit voltage, Voc, short circuit current, Isc, fill factors, solar cells efficiency and UV absorption. Result shows good potential in the blueberry dyes as a sensitizer but further investigation is needed in order to fully understand the characteristic of these organic dyes.


Sign in / Sign up

Export Citation Format

Share Document