scholarly journals Homogeneous Catalyzed Valorization of Furanics: A Sustainable Bridge to Fuels and Chemicals

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1371
Author(s):  
Rosa Padilla ◽  
Sakhitha Koranchalil ◽  
Martin Nielsen

The development of efficient biomass valorization is imperative for the future sustainable production of chemicals and fuels. Particularly, the last decade has witnessed the development of a plethora of effective and selective transformations of bio-based furanics using homogeneous organometallic catalysis under mild conditions. In this review, we describe some of the advances regarding the conversion of target furanics into value chemicals, monomers for high-performance polymers and materials, and pharmaceutical key intermediates using homogeneous catalysis. Finally, the incorporation of furanic skeletons into complex chemical architectures by multifunctionalization routes is also described.

Author(s):  
Sengshiu Chung ◽  
Peggy Cebe

We are studying the crystallization and annealing behavior of high performance polymers, like poly(p-pheny1ene sulfide) PPS, and poly-(etheretherketone), PEEK. Our purpose is to determine whether PPS, which is similar in many ways to PEEK, undergoes reorganization during annealing. In an effort to address the issue of reorganization, we are studying solution grown single crystals of PPS as model materials.Observation of solution grown PPS crystals has been reported. Even from dilute solution, embrionic spherulites and aggregates were formed. We observe that these morphologies result when solutions containing uncrystallized polymer are cooled. To obtain samples of uniform single crystals, we have used two-stage self seeding and solution replacement techniques.


Author(s):  
A. L. Rusanov ◽  
L. G. Komarova ◽  
M. P. Prigozhina ◽  
V. A. Tartakovsky ◽  
S. A. Shevelev ◽  
...  

Author(s):  
Kenichi Nishikawa ◽  
Ioana Duţan ◽  
Christoph Köhn ◽  
Yosuke Mizuno

AbstractThe Particle-In-Cell (PIC) method has been developed by Oscar Buneman, Charles Birdsall, Roger W. Hockney, and John Dawson in the 1950s and, with the advances of computing power, has been further developed for several fields such as astrophysical, magnetospheric as well as solar plasmas and recently also for atmospheric and laser-plasma physics. Currently more than 15 semi-public PIC codes are available which we discuss in this review. Its applications have grown extensively with increasing computing power available on high performance computing facilities around the world. These systems allow the study of various topics of astrophysical plasmas, such as magnetic reconnection, pulsars and black hole magnetosphere, non-relativistic and relativistic shocks, relativistic jets, and laser-plasma physics. We review a plethora of astrophysical phenomena such as relativistic jets, instabilities, magnetic reconnection, pulsars, as well as PIC simulations of laser-plasma physics (until 2021) emphasizing the physics involved in the simulations. Finally, we give an outlook of the future simulations of jets associated to neutron stars, black holes and their merging and discuss the future of PIC simulations in the light of petascale and exascale computing.


Author(s):  
Artem S. Belousov ◽  
Anton Esipovich ◽  
Evgeny Kanakov ◽  
Ksenia V. Otopkova

Living in the time of the most heighten environmental issues, humanity should take care about the future. Green Chemistry provides a broad range of possibilities for researchers to design of...


2020 ◽  
Vol 27 (6) ◽  
pp. 2195-2202
Author(s):  
El Hadji Ndongo Diaw ◽  
Severine Le Roy ◽  
Gilbert Teyssedre ◽  
Eddy Aubert

Sign in / Sign up

Export Citation Format

Share Document