Living Reviews in Computational Astrophysics
Latest Publications


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

Published By Springer-Verlag

2365-0524, 2367-3621

Author(s):  
Michał Hanasz ◽  
Andrew W. Strong ◽  
Philipp Girichidis

AbstractWe review numerical methods for simulations of cosmic ray (CR) propagation on galactic and larger scales. We present the development of algorithms designed for phenomenological and self-consistent models of CR propagation in kinetic description based on numerical solutions of the Fokker–Planck equation. The phenomenological models assume a stationary structure of the galactic interstellar medium and incorporate diffusion of particles in physical and momentum space together with advection, spallation, production of secondaries and various radiation mechanisms. The self-consistent propagation models of CRs include the dynamical coupling of the CR population to the thermal plasma. The CR transport equation is discretized and solved numerically together with the set of MHD equations in various approaches treating the CR population as a separate relativistic fluid within the two-fluid approach or as a spectrally resolved population of particles evolving in physical and momentum space. The relevant processes incorporated in self-consistent models include advection, diffusion and streaming propagation as well as adiabatic compression and several radiative loss mechanisms. We discuss, applications of the numerical models for the interpretation of CR data collected by various instruments. We present example models of astrophysical processes influencing galactic evolution such as galactic winds, the amplification of large-scale magnetic fields and instabilities of the interstellar medium.



Author(s):  
Kenichi Nishikawa ◽  
Ioana Duţan ◽  
Christoph Köhn ◽  
Yosuke Mizuno

AbstractThe Particle-In-Cell (PIC) method has been developed by Oscar Buneman, Charles Birdsall, Roger W. Hockney, and John Dawson in the 1950s and, with the advances of computing power, has been further developed for several fields such as astrophysical, magnetospheric as well as solar plasmas and recently also for atmospheric and laser-plasma physics. Currently more than 15 semi-public PIC codes are available which we discuss in this review. Its applications have grown extensively with increasing computing power available on high performance computing facilities around the world. These systems allow the study of various topics of astrophysical plasmas, such as magnetic reconnection, pulsars and black hole magnetosphere, non-relativistic and relativistic shocks, relativistic jets, and laser-plasma physics. We review a plethora of astrophysical phenomena such as relativistic jets, instabilities, magnetic reconnection, pulsars, as well as PIC simulations of laser-plasma physics (until 2021) emphasizing the physics involved in the simulations. Finally, we give an outlook of the future simulations of jets associated to neutron stars, black holes and their merging and discuss the future of PIC simulations in the light of petascale and exascale computing.



Author(s):  
Anthony Mezzacappa ◽  
Eirik Endeve ◽  
O. E. Bronson Messer ◽  
Stephen W. Bruenn

AbstractThe proposal that core collapse supernovae are neutrino driven is still the subject of active investigation more than 50 years after the seminal paper by Colgate and White. The modern version of this paradigm, which we owe to Wilson, proposes that the supernova shock wave is powered by neutrino heating, mediated by the absorption of electron-flavor neutrinos and antineutrinos emanating from the proto-neutron star surface, or neutrinosphere. Neutrino weak interactions with the stellar core fluid, the theory of which is still evolving, are flavor and energy dependent. The associated neutrino mean free paths extend over many orders of magnitude and are never always small relative to the stellar core radius. Thus, neutrinos are never always fluid like. Instead, a kinetic description of them in terms of distribution functions that determine the number density of neutrinos in the six-dimensional phase space of position, direction, and energy, for both neutrinos and antineutrinos of each flavor, or in terms of angular moments of these neutrino distributions that instead provide neutrino number densities in the four-dimensional phase-space subspace of position and energy, is needed. In turn, the computational challenge is twofold: (i) to map the kinetic equations governing the evolution of these distributions or moments onto discrete representations that are stable, accurate, and, perhaps most important, respect physical laws such as conservation of lepton number and energy and the Fermi–Dirac nature of neutrinos and (ii) to develop efficient, supercomputer-architecture-aware solution methods for the resultant nonlinear algebraic equations. In this review, we present the current state of the art in attempts to meet this challenge.



Author(s):  
Bernhard Müller

AbstractMulti-dimensional fluid flow plays a paramount role in the explosions of massive stars as core-collapse supernovae. In recent years, three-dimensional (3D) simulations of these phenomena have matured significantly. Considerable progress has been made towards identifying the ingredients for shock revival by the neutrino-driven mechanism, and successful explosions have already been obtained in a number of self-consistent 3D models. These advances also bring new challenges, however. Prompted by a need for increased physical realism and meaningful model validation, supernova theory is now moving towards a more integrated view that connects multi-dimensional phenomena in the late convective burning stages prior to collapse, the explosion engine, and mixing instabilities in the supernova envelope. Here we review our current understanding of multi-D fluid flow in core-collapse supernovae and their progenitors. We start by outlining specific challenges faced by hydrodynamic simulations of core-collapse supernovae and of the late convective burning stages. We then discuss recent advances and open questions in theory and simulations.



Author(s):  
Andrey Beresnyak
Keyword(s):  

The publication of this article unfortunately contained a mistake. The acknowledgement is missing, you can find it below.



Author(s):  
Alexandre Marcowith ◽  
Gilles Ferrand ◽  
Mickael Grech ◽  
Zakaria Meliani ◽  
Illya Plotnikov ◽  
...  

AbstractThis review aims at providing an up-to-date status and a general introduction to the subject of the numerical study of energetic particle acceleration and transport in turbulent astrophysical flows. The subject is also complemented by a short overview of recent progresses obtained in the domain of laser plasma experiments. We review the main physical processes at the heart of the production of a non-thermal distribution in both Newtonian and relativistic astrophysical flows, namely the first and second order Fermi acceleration processes. We also discuss shock drift and surfing acceleration, two processes important in the context of particle injection in shock acceleration. We analyze with some details the particle-in-cell (PIC) approach used to describe particle kinetics. We review the main results obtained with PIC simulations in the recent years concerning particle acceleration at shocks and in reconnection events. The review discusses the solution of Fokker–Planck problems with application to the study of particle acceleration at shocks but also in hot coronal plasmas surrounding compact objects. We continue by considering large scale physics. We describe recent developments in magnetohydrodynamic (MHD) simulations. We give a special emphasis on the way energetic particle dynamics can be coupled to MHD solutions either using a multi-fluid calculation or directly coupling kinetic and fluid calculations. This aspect is mandatory to investigate the acceleration of particles in the deep relativistic regimes to explain the highest cosmic ray energies.



Author(s):  
José A. Pons ◽  
Daniele Viganò

AbstractThe strong magnetic field of neutron stars is intimately coupled to the observed temperature and spectral properties, as well as to the observed timing properties (distribution of spin periods and period derivatives). Thus, a proper theoretical and numerical study of the magnetic field evolution equations, supplemented with detailed calculations of microphysical properties (heat and electrical conductivity, neutrino emission rates) is crucial to understand how the strength and topology of the magnetic field vary as a function of age, which in turn is the key to decipher the physical processes behind the varied neutron star phenomenology. In this review, we go through the basic theory describing the magneto-thermal evolution models of neutron stars, focusing on numerical techniques, and providing a battery of benchmark tests to be used as a reference for present and future code developments. We summarize well-known results from axisymmetric cases, give a new look at the latest 3D advances, and present an overview of the expectations for the field in the coming years.



Author(s):  
Andrey Beresnyak

AbstractWe review the current status of research in MHD turbulence theory and numerical experiments and their applications to astrophysics and solar science. We introduce general tools for studying turbulence, basic turbulence models, MHD equations and their wave modes. Subsequently, we cover the theories and numerics of Alfvénic turbulence, imbalanced turbulence, small-scale dynamos and models and numerics for supersonic MHD turbulence.



Author(s):  
Ulrich M. Noebauer ◽  
Stuart A. Sim


Author(s):  
Minna Palmroth ◽  
Urs Ganse ◽  
Yann Pfau-Kempf ◽  
Markus Battarbee ◽  
Lucile Turc ◽  
...  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document