Filtration Efficiency and Regeneration Behavior in a Catalytic Diesel Particulate Filter with the Use of Diesel/Polyoxymethylene Dimethyl Ether Mixture

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1425
Author(s):  
Hao Chen ◽  
Xin Sun ◽  
Xiaochen Wang ◽  
Fengyu Sun ◽  
Peng Zhang ◽  
...  

Polyoxymethylene dimethyl ether (PODEn) is a promising diesel additive, especially in particulate matter reduction. However, how PODEn addition affects the filtration efficiency and regeneration process of a catalytic diesel particulate filter is still unknown. Therefore, this experimental work investigated the size-dependent particulate number removal efficiency under various engine loads and exhaust gas recirculation ratios when fueling with diesel and diesel/PODEn mixture. In addition, the regeneration behavior of the cDPF was studied by determining the break-even temperatures for both tested fuels. The results showed that the cDPF had lower removal efficiencies in nucleation mode particles but higher filtration efficiencies in accumulation mode particles. In addition, the overall filtration efficiency for P10 particles was higher than that for D100 particles. Positioning the upstream cDPF, increasing the EGR ratio slightly decreased the number concentration of nucleation mode particles but greatly increased that of accumulation mode particles. However, increasing the EGR ratio decreased the removal efficiency of nanoparticles, and this effect was more apparent for the P10 case. Under the same period of soot loading, the pressure drop of P10 fuel was significantly lower than that of diesel fuel. In addition, a significantly lower BET was observed for the P10 fuel, in comparison with D100 fuel. In conclusion, adopting cDPF is beneficial for fueling with P10 in terms of the overall filtration efficiency in the particulate number and the lower input energy requirement for active regeneration. However, with the addition of EGR, the lower filtration efficiencies of nanoparticles should be concerned, especially fueling with diesel/PODEn mixture.

Author(s):  
Mahdi Doozandegan ◽  
Vahid Hosseini ◽  
Mohammad Ali Ehteram

High-sulphur and medium-sulphur diesel fuels are still used in several countries. Although diesel particulate filter technology for on-road diesel engines has existed since 1989, the availability of high-sulphur and medium-sulphur diesel fuels in the market causes delays in the use of catalysed filter technologies. However, the situation in places such as Tehran is considered unhealthy because of particles and black carbon, and full distribution of ultra-low-sulphur diesel is awaited eagerly. The purpose of this study is to investigate the effect of the sulphur content in fuels on the gaseous and solid exhaust emissions of a 220 kW Euro II engine equipped with a sintered metal active–passive filter, focusing on the regeneration phenomenon. The results show that the efficiency for filtering the maximum number of particles was 99.9% and that the average was above 99% for steady-state operating conditions for both high-sulphur diesel (7700 ppm) and medium-sulphur diesel (229 ppm). The removal efficiency of the particle mass was low in the case of high-sulphur diesel owing to the sulphate condensate collection effect as the result of using a non-heated sample line. During regeneration, the number of particles increased in comparison with that in the filtration phase but the total number of emitted particles was less than the engine baseline value. The results for both fuels were the same, and the only measurable difference was the high sulphur dioxide production in the high-sulphur diesel during regeneration. This study demonstrates the potential of this type of filter technology for the effective removal of solid particles independent of the sulphur content of the fuel. With the exception of the decrease in the removal efficiency of the particle mass and the high sulphur dioxide production, no other notable difference was observed to be caused by the change in the sulphur content of the diesel fuel.


2009 ◽  
Vol 64 (8) ◽  
pp. 1625-1634 ◽  
Author(s):  
Juan Yang ◽  
Mark Stewart ◽  
Gary Maupin ◽  
Darrell Herling ◽  
Alla Zelenyuk

2013 ◽  
Vol 726-731 ◽  
pp. 2280-2283 ◽  
Author(s):  
Zhu Sun ◽  
Ping Sun ◽  
Qi Min Wu ◽  
Jun Hu ◽  
Min Zhang

The technology of diesel particulate filter (DPF) is one of the most effective ways to control particulate emission of diesel engine. In this paper, a DPF was installed on a high-pressure common rail diesel engine, which meets China Stage III emission standard (GB17691-2005), to investigate the filtration efficiency of DPF, and its effects on exhaust back pressure, fuel economy, and emissions characteristics of diesel engine by test bench. Results showed that after DPF was installed on the engine, the PM was reduced by more than 90%, while specific fuel consumption and exhaust back pressure were increased by about 5% and 10kPa, respectively.


2018 ◽  
Author(s):  
Z. Gerald Liu ◽  
Devin R. Berg ◽  
Thaddeus A. Swor ◽  
James J. Schauer‡

Two methods, diesel particulate filter (DPF) and selective catalytic reduction (SCR) systems, for controlling diesel emissions have become widely used, either independently or together, for meeting increasingly stringent emissions regulations world-wide. Each of these systems is designed for the reduction of primary pollutant emissions including particulate matter (PM) for the DPF and nitrogen oxides (NOx) for the SCR. However, there have been growing concerns regarding the secondary reactions that these aftertreatment systems may promote involving unregulated species emissions. This study was performed to gain an understanding of the effects that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel engine exhaust. Samples were extracted using a source dilution sampling system designed to collect exhaust samples representative of real-world emissions. Testing was conducted on a heavy-duty diesel engine with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF system and then a SCR system. Each of the samples was analyzed for a wide variety of chemical species, including elemental and organic carbon, metals, ions, n-alkanes, aldehydes, and polycyclic aromatic hydrocarbons, in addition to the primary pollutants, due to the potential risks they pose to the environment and public health. The results show that the DPF and SCR systems were capable of substantially reducing PM and NOx emissions, respectively. Further, each of the systems significantly reduced the emission levels of the unregulated chemical species, while the notable formation of new chemical species was not observed. It is expected that a combination of the two systems in some future engine applications would reduce both primary and secondary emissions significantly.


Sign in / Sign up

Export Citation Format

Share Document